Former Tronox Wood Treating Facility, Springfield, Missouri

This Remedial Action Optimization Work Plan (RAO) technical memorandum for the former Tronox Facility (Facility) in Springfield, MO was prepared by Environmental Works, Inc. and is being submitted by the Greenfield Environmental Multistate Trust LLC, not individually, but solely in its representative capacity as Trustee for the Multistate Environmental Response Trust (the Multistate Trust) in accordance with the requirements of the combined Resource Conservation and Recovery Act (RCRA) Permit # MOD007129406, issued by the Missouri Department of Natural Resources (MoDNR) and United States Environmental Protection Agency (EPA). This memorandum summarizes the current status of the Remedial Action Optimization (RAO) activities for the former Tronox Wood Treating Facility in Springfield, Missouri (Facility, see **Figure 1.0**). On December 12, 2016, the *Remedial Action Optimization Status Memorandum Revision 1* (*Memorandum Revision 1*) (EWI, 2016a) was submitted. This 2016 document (1) summarized the findings and conclusions of the RAO work performed to-date in 2016 in accordance with the *Remedial Action Optimization Work Plan* (EWI, 2016b) and (2) presented the recommended next steps to address remaining data gaps based on those findings in an attached *RAO Work Plan Addendum to Remedial Action Optimization Work Plan (Work Plan Addendum*) (EWI, 2016c). To recap, the *Memorandum Revision 1* provided information on the following RAO activities:

- Installation of Upper Flow Zone (UFZ) monitoring wells SMW-76, 77, 78, 79, 80, 81, 82, 83, 84, and 85 with details on observations and initial sampling results
- Installation of Secondary Flow Zone (SFZ) monitoring wells BMW-12, 13, and 14 with details on observations and initial sampling results
- Completion of 47 TarGOST borings in former on-Facility source areas and four Geoprobe borings with soil sampling
- Surficial soil sampling in the former Landfarm Area, the former Drip Track, and the former Black Tie Area
- Evaluation of potential vapor intrusion from groundwater data using the U.S. Environmental Protection Agency (USEPA) Vapor Intrusion Screening Level (VISL) software

The 2016 Work Plan Addendum proposed borings and soil vapor monitoring, and two new UFZ monitoring wells in the residential area as a result of findings and preliminary conclusions of the *Memorandum Revision 1*. The vapor inhalation exposure screening tasks described in the 2016 Work Plan Addendum are not addressed in this memorandum because this work was summarized in the *Indoor Air Work Plan* (EWI, 2017). Rather, this status memorandum focuses on the two new monitoring wells that were installed, evaluates groundwater monitoring results for all RAO monitoring wells and related delineation, recaps key facility investigations, identifies data gaps, and provides recommendations for additional investigation activities.

This memorandum contains the following sections:

Section 1.	Recent RAO Investigative Activities, Upper Flow Zone
Section 2.	Recent RAO Investigative Activities, Secondary Flow Zone
Section 3.	Cross-Sections of Areas of Interest
Section 4.	TarGOST Investigation Summary
Section 5.	Source Area Surficial Soil for Comparison with Screening Levels
Section 6.	Recommendations for Additional RAO Activities
Section 7.	References

1. Recent RAO Investigative Activities, Upper Flow Zone (UFZ) Investigation

Key objectives of the Phase 2 RAO investigation included delineation of the nature and extent of the offsite dense, non-aqueous phase liquid (DNAPL) and the dissolved phase plume chemicals of concern (COCs) consisting of benzene, toluene, ethylbenzene, xylenes, naphthalene (BTEXN) and polycyclic aromatic hydrocarbons (PAHS) within the Upper Flow Zone (UFZ). The UFZ consists of unconsolidated materials (mainly clay), weathered bedrock, and the upper portion of the bedrock that has fracturing and karst solution features. Saturation commonly occurs near the bedrock interface. As part of the RAO Phase 1 activities, an evaluation of the potential area fracture trends and possible migration pathways was developed. **Figure 2.0** illustrates the locations of potential fracture zones in the area of interest for the UFZ investigation. The RAO well locations within the UFZ targeted the intersections of these karst and fracture migration features. The RAO investigative approach included off-site UFZ monitoring well installations near possible fracture features in three targeted areas: off-site areas to the northeast (Northeast Clifton Drainage area), off-site to the east (Greene County Highway Department [GCHD] property) and off-site to the south and southwest (BNSF railroad and residential area).

The following summarizes the investigations completed to date within each of the targeted areas. *Memorandum Revision 1* includes more detailed observations made during drilling of the initial UFZ monitoring wells: SMW-76 through 85. Well construction information for all RAO wells has been added to the Summary of Monitoring Well and Recovery Well Construction Details and provided in **Table 1.0**. Groundwater levels and DNAPL monitoring are provided on **Table 2.0**, and analytical data from sampling events are provided on **Table 3.0**. Key summary information on geology, water levels, impact, and concentration trends for all new RAO wells is summarized on **Table 4.0**, The Data Quality Objectives (DQO) stated for RAO work are provided in **Table 5.0** and provided as reference to the RAO work performed; this table has been modified related to that work and its findings as noted in the sections below. **Table 6.0** provides a statistical analysis summary of plume stability for SFZ well BRW-2. Boring and well logs for all RAO wells are provided in **Attachment A**.

1.1 Northeast Clifton Drainage New UFZ Wells

Seven monitoring wells were installed along the Clifton Drainage northeast of the Facility as shown on **Figure 3.0**. Wells were installed in City of Springfield right-of-ways (ROW) targeting the interpreted fracture traces depicted in **Figure 2.0**. The wells were installed progressively in three phases to delineate the UFZ DNAPL and dissolved phase plume.

- Three monitoring wells (SMW-80, SMW-81, and SMW-82) were initially installed in the residential neighborhood located immediately northeast of the Facility.
- Wells SMW-84 and SMW-85 were subsequently installed further to the northeast along the Clifton Drainage on commercial properties.
- Wells SMW-86 and SMW-87 were installed in the northeast residential neighborhood for lateral delineation following preliminary evaluation of the previously installed UFZ wells as part of the 2016 Work Plan Addendum (EWI, 2016b).

The 2016 addendum also provided a phased approach for the installation and sampling of soil borings, UFZ monitoring wells and the installation and sampling from off-site soil vapor points. The soil boring, temporary groundwater well sampling and the soil vapor investigation was conducted in December 2016. The soil gas investigation is discussed in the *Indoor Air Work Plan* (EWI, 2017).

The following summarizes information and observations during drilling, installation, and initial sampling of the two newest wells, SMW-86 and SMW-87, installed within the northeast residential area:

SMW-86: (corner of Margret Street and Truman Street)

- Silty clay with thin weathered bedrock at 15 feet below land surface (ft bls), voids from 16 to 21 ft bls, and competent limestone with some chert to total depth of 40 ft bls.
- Zero PID readings noted, but creosote-like odor noted at 21 ft bls during drilling and subsequent development.
- Slow water production; did not enter well until after construction.
- Constructed with screen from 15 to 30 ft bls.
- Sheen noted during initial development and initial screening sampling in December 2016.
- Nine COCs exceeded groundwater protection standards (GWPS) in initial sampling, no detections in subsequent sampling.
- Well was re-developed in January 2017 due to siltation, prior to first quarter 2017 groundwater sampling. No DNAPL was observed during redevelopment or during the sampling event.

<u>SMW-87</u>: (Margret Street, east of Fulbright Avenue)

- Clay and chert with weathered limestone fragments to 25 ft bls, competent bedrock at 25 ft bls, and minor chert and indications of weathering from 25 to 40 ft bls total depth.
- No elevated PID readings and no creosote odors noted during drilling.
- Slow water production.
- Constructed with screen from 18 to 38 ft bls.
- Sheen, black DNAPL globules, and strong creosote odor were noted during purging prior to the initial December 2016 sampling; trace DNAPL noted during subsequent gauging/sampling events.
- 13 COCs exceeded GWPS in the initial groundwater sampling after installation; nine to 11 COCs exceed GWPS in subsequent sampling.

Observations and conclusions from a review of **Figure 3.0**, **Table 3.0** and **Table 4.0**, with an emphasis on DNAPL detections, magnitude of COC concentrations in groundwater, hydrogeology, and analytical data trends, are presented below for the northeast area UFZ RAO wells (including SMW-76 installed on-facility).

- Secondary porosity features (voids, fractures) were noted in five of the eight wells at depths above 20 ft bls. SMW-84 (northeast Clifton Drainage east of the residential area) is an exception with deeper voids (45-55 ft bls); these are similar in depth to the DNAPL void in RW-21 further to the northeast. Secondary porosity features are possibly present in all wells, but not amenable to detection due to the hammer/rotary air drilling technique used for three of the wells.
- With one exception, the deepest weathered bedrock is to 24 ft bls, and thickness of weathering varies less than one foot to 12 feet. SMW-87 is the exception, where weathered bedrock occurs 25 -40 ft bls. Thickness of weathering may be related to bedrock fracture or karst features, which are suspected groundwater (and contaminant) migration pathways. Thus, higher concentrations might be expected in such areas. Overall, however, thickness of weathering does not appear to correlate to magnitude of COC concentrations; i.e., higher concentrations do not always occur in areas of thicker weathering.

Former Tronox Wood Treating Facility, Springfield, Missouri

- COC concentration trends from initial sampling in 2016 to second quarter 2017 sampling have decreased in four wells, remained unchanged in 3 wells, and increased in one well (see Table 3.0). Figure 3.0 depicts the number of COCs for order of magnitude range exceedances of the GWPs for each new well from the second quarter 2017 sampling event.
 - Concentrations are decreasing in SMW-76, SMW-81, SMW-86, and SMW-85. GWPS exceedances have significantly decreased in SMW-76, SMW-81, and SMW-85.
 - Concentrations are mostly unchanging in SMW-80, SMW-82, and SMW-87; these wells each have several COCs from 10 times to greater than 100 times the GWPS.
 - Concentrations are increasing in SMW-84. This well has the most COCs 10 times to greater than 100 times the GWPS (7 and 4, respectively).
 - Naphthalene has the highest concentration in wells with increasing or unchanging trends, while phenanthrene has the greatest concentration in wells with decreasing trends.
- Generally, wells with highest degree of impact (DNAPL, high dissolved concentrations, most GWPS exceedances, and steady or increasing concentration trends) occur closer to the presumed centerline of the Clifton Drainage hydrogeological feature, e.g. SMW-80, SMW-82, SMW-84. SMW-87 is an exception, being located more distant to the northwest from the main Clifton Drainage; this well may be situated on an impacted fracture migration pathway outside the main Clifton Drainage fracture/karst network.
- All eight wells had some level of creosote odor during drilling, development, or purging. Five of
 the wells had visual non-aqueous phase liquid (NAPL) as sheen or globules, but no well has
 accumulated DNAPL. This suggests that small amounts of DNAPL are present within the areas
 and horizons of the Clifton Drainage hydrogeological network investigated by RAO wells, but are
 largely immobile.
 - SMW-80, closest to the Facility, had the most NAPL impact during drilling (sheen on water and floating globules), but has had no subsequent DNAPL observed.
 - SMW-82, SMW-84, and SMW-87 had trace NAPL during multiple monitoring events.
 - SMW-86 had trace NAPL only initially, and dissolved phase concentrations have decreased to below GWPS.
 - SMW-76 (on-facility), SMW-81 (mid-residential area), and SMW-85 (northeasternmost) have had no NAPL.
- DNAPL continues to accumulate in wells RW-21 and WL MW-3 in the northern portion of the Clifton Drainage, suggesting that residual DNAPL in this area is possibly mobile.
 - Impact at these locations occurs at the lowest elevation (~1220 ft above mean sea level, amsl) within the Clifton Drainage, and appears related to a horizontal bedding plane feature identified in the *Woodlawn Spring Study Area Investigation Report* (Tronox, 2006).
 - This horizon is close to the void at 45 ft bls noted in SMW-84, suggesting a continuation of this potential migration pathway from the area of RW-21 to the area of SMW-84 (see Figure 3.0).
 - The impact and the horizontal bedding plane feature have been delineated downgradient to the north by the Woodlawn Spring investigation and subsequent groundwater sampling events, but has not been investigated further southwest along the Clifton Drainage.

Conclusions regarding plume delineation in the northeast Clifton Drainage are summarized below:

- The new wells have further defined horizontal delineation of UFZ impact.
- SMW-80, SMW-82, and SMW-84 define the area of higher impact within the main part of the Clifton Drainage network; impact is characterized by relatively unchanging, high concentrations of COCs orders of magnitude in excess of the GWPS, with largely immobile, residual DNAPL.
- SMW-81, SMW-85, and SMW-86 exhibit lower concentrations of COCs that are decreasing over time, and appear located in parts of the dissolved phase plume more distant from areas of residual DNAPL. This is also the case for on-facility well SMW-76.
- Sampling of the entire UFZ well network supports delineation of the plume boundary to the north (WLMW-2, WLMW-4, WLMW-11), east (SMW-73, SMW-85), south (SMW-71, SMW-75) given location of these wells with known groundwater flow direction to the northeast and north within the Clifton Drainage feature. COC exceedances of GWPS in SMW-85 are only slightly over their GWPS concentrations, have demonstrated decreasing trends over time, and do not include key COCs naphthalene and phenanthrene.
- The UFZ plume is not bounded to the northwest and west:
 - RW-21 by Kearney Street continues to yield accumulating DNAPL, and no wells exist to the west of RW-21 to delineate DNAPL or dissolved plume extent to the west. Based on the Woodlawn Spring Study (Tronox, 2006), other non-Facility related sources of petroleum impact are present in this north Clifton Drainage area, which complicates identification of the Facility-specific plume. Collection of DNAPL samples from RW21 and WL MW-3 for fingerpint analysis, as well as on-facility wells for comparison.
 - SMW-87 located northwest of the main plume contains GWPS exceedances at levels higher than concentrations in wells SMW-81 and SMW-86 that are closer to the main part of the plume. A new UFZ well located northwest of SMW-87 based on interpreted fracture trends is recommended.
- Vertical delineation of the DNAPL plume and related migration pathways does not appear complete.
 - DNAPL and horizontal solution feature migration pathways in the area of RW-21 occur at lower elevations (1220 amsl) than impact closer to the Facility (1250 ft amsl and above).
 - A similar horizon of impact was encountered in SMW-84 closer to the Facility area, and includes both DNAPL and elevated concentrations of COCs.
 - Horizontal extent and vertical stair-stepping nature of this lower 1220 ft amsl zone back toward the Facility has not been evaluated. Existing monitoring wells southwest of SMW-84 do not extend deep enough to investigate this situation.
 - Section 3 (Cross-Sections of Areas of Interest for Additional Investigation) presents additional information related to these observations.

1.2 Off-Site East Greene County New UFZ Wells

Two new monitoring wells (SMW-77 and SMW-78) were installed on the Greene County Highway Department (GCHD) property east of the Facility as depicted on **Figure 4.0**.

• These wells targeted similar depths to SMW-12C (located at the property line dividing the Facility from GCHD) to delineate the DNAPL and dissolved phase impact to the east of the

Former Tronox Wood Treating Facility, Springfield, Missouri

Facility. No fracture features were interpreted for this area, so well installation targeted possible horizontal bedding plane features which are known to be migration pathways particularly in the upper portion of the weathered limestone bedrock.

• Based on the observations during drilling and from the initial sampling event for these wells, no additional investigation in this area was recommended.

Observations and conclusions from a review of **Figure 4.0**, **Table 3.0** and **Table 4.0** are presented below for these east area UFZ RAO wells.

- No voids, fractures, or other secondary porosity features were noted in either well.
- Although the wells were installed with similar depths and screen intervals, water level ranges in SMW-78 and SMW-77 were dissimilar for the first two months of monitoring. The range of SMW-78 was 15.1 30.6 ft bls in January and February 2017, respectively. During that time period, water levels in SMW-78 were nearly twice as deep as water levels in SMW-77 (9.4 18.9 ft bls). However, during the April 2017 gauging event, the depth to water in both wells was near 9 ft bls. Both wells' water levels had been lower than that of SMW-12C (4.5 8.3 ft bls) in January and February 2017. The most recent level gauged in SMW-12C was 10.5 ft bls.
- No visual indications of Facility-related COCs were observed during drilling or subsequent sampling events. A possible diesel-like odor was noted during drilling of SMW-78.
- No GWPS exceedances have occurred in SMW-77. Seven initial detections of Facility COCs decreased to one (acenaphthene) in the second quarter 2017 sampling.
- SMW-78 reported 12 detections of Facility COCs during initial sampling with one GWPS exceedance (phenanthrene). All subsequent sampling has reported non-detect for all Facility COCs.

<u>Conclusions regarding plume delineation in the east GCHD area</u>: The repeated lack of impact above GWPS supports the previous recommendations that no additional investigation in this area is warranted. No further delineation is deemed warranted; however, these wells will be sampled quarterly throughout 2017 to verify that delineation has been achieved.

1.3 Off-Site Southwest New UFZ Wells

Two new monitoring wells (SMW-79 and SMW-83) were installed in City of Springfield ROW locations as depicted on **Figure 5.0**. Lack of BNSF access for drilling and obstacles from underground utilities prevented drilling the other proposed well locations as identified in the RAO Work Plan. Former well SMW-60, located 750 ft south of the BNSF/Facility property boundary, was rehabilitated in 2016 after damage by BNSF activities for use as a south delineation well, given the overall southward groundwater flow direction from the Facility. Use of SMW-60 for southern delineation has been added to the investigative approach in Section C of **Table 5.0**; sampling in September 2017 reported non-detect for all Facility COCs.

Observations and conclusions from a review of **Figure 5.0**, **Table 3.0** and **Table 4.0** are presented below for these southwest and south area UFZ RAO wells.

- No voids or fractures were noted in either well, although SMW-83 contained a horizon of weathered bedrock 20-29 ft bls.
- No indications of Facility-related impact were observed during drilling or subsequent sampling events.

Former Tronox Wood Treating Facility, Springfield, Missouri

- SWW-79 remained dry since installation, monitoring will continue for presence of water, and sampling will be conducted if water appears.
- SMW-83 required several days to accumulate sufficient water for sampling. Lack of groundwater (SMW-79 and earlier abandoned well SMW-53) and slow recharge in this area indicate very little groundwater movement to the southwest from the Facility.
- SMW-83 exhibited 3 detections of Facility COCs during initial sampling with one estimated COC exceedance (phenanthrene) slightly over the GWPS. All subsequent sampling has reported non-detect for all Facility COCs through second quarter 2017 sampling.
- SMW-60 was rehabilitated in October 2016. The new well construction was completed as flush mount and some debris that had entered the well was removed via airlifting. At the time of the rehabilitation, the well was dry. There were no odors or other indication of impact noted during the airlifting activities. The total depth was measured as approximately 34 ft bls, which is consistent with the original as-built depth. Initial sampling exhibited no Facility COCs detected.
- Based on established groundwater flow directions to the south-southwest, SMW-79, SMW-83, and SMW-60 provide adequate downgradient monitoring locations to the south Facility boundary.

<u>Conclusions regarding plume delineation in the southwest and south area</u>: A single COC detection slightly exceeding the GWPS in one well with subsequent repeated lack of detections, and dry wells, indicates that no additional delineation is warranted. Monitoring for groundwater presence and analytical sampling will continue throughout 2017 to verify continued plume absence.

2.0 Recent RAO Investigative Activities, Secondary Flow Zone Investigation

The Secondary Flow Zone (SFZ) is a zone of dolomitic limestone with increased permeability that occurs between 140 and 160 feet below ground surface, based on previous investigations and results of RAO work. The RAO investigation was designed to determine the lateral and vertical extents of impact in this zone and to provide more data on the connectivity between the UFZ and SFZ. All of the SFZ wells are located on the Facility. **Figure 6.0** depicts new RAO SFZ wells, BMW-12, BMW-13, BMW-14, as well as UFZ well SMW-76. For each well, the number of COCs per order of magnitude exceedance ranges of the GWPS from the second quarter 2017 sampling event are listed.

2.1 Secondary Flow Zone Lateral Delineation Monitoring Wells

Groundwater samples from the perimeter SFZ wells BMW-10R and BMW-2 have, historically, had COC concentrations above GWPS. Objectives for defining the extent of the SFZ plume in the area around BMW-10R and for confirming the decreasing treads from BMW-2 are included in Section F of **Table 5.0**.

To determine the horizontal extent of the SFZ plume north, northeast, and south of BMW-10R, three wells were planned for installation. The well to the northeast was also planned to evaluate the vertical connectivity between the UFZ and SFZ. Wells to the northeast and north of BMR-10R were planned on-facility and were drilled, while the third delineation well off-site to the southwest was not installed because access could not be obtained.

During drilling of the north targeted SFZ delineation well, a water producing void with creosote-like odor was encountered. Rather than build a SFZ well at this location, a UFZ well, designated SMW-76, was completed (see **Figure 5.0**). SMW-76 UFZ evaluation was included in previous Section 1.1. BMW-14 was subsequently installed to the northwest of SMW-76 and completed as a SFZ well with a total depth of 180 ft bls as planned.

Former Tronox Wood Treating Facility, Springfield, Missouri

Installation of the northeast delineation well (BMW-12) began with setting a surface casing into bedrock at 35 ft bls, and drilling to 80 ft bls as part of progressive installation to aid in sampling of multiple depths. DNAPL entered the bore from 35 to 75 ft bls, so the well was completed as a deep UFZ DNAPL recovery well.

Detailed descriptions of BMW-12 and BMW-14 drilling and installation were provided in the 2016 Memorandum Revision 1, and summary information of geology, hydrogeology, and chemistry are provided on **Table 3.0** and **Table 4.0**. Referencing these tables, **Figure 6.0**, and results of 2017 groundwater sampling events, key information regarding BMW-10R, BMW-12, and BMW-14 with an emphasis on delineation is provided below:

- No indications of creosote impact, odor, or PID detections were observed during drilling BMW-14 within the UFZ or SFZ zones.
- Two VOCs were detected during initial 2016 sampling of BMW-14, with three VOCs and naphthalene detected during the two 2017 sampling events. All concentrations are below GWPS. These results demonstrate delineation of the SFZ northwest of BMW-10R.
- Recharging DNAPL presence in BMW-12 demonstrates significant creosote impact in the UFZ which could extend deeper, however, the well is not deep enough to evaluate the expected SFZ zone (approximately 140 to 160 ft bls).
- No Facility COCs were detected in groundwater samples from BMW-10R in 2015 and 2016; 10 COCs were reported in September 2017 sampling, with three exceeding GWPS. Statistical analysis (e.g. Mann-Kendall Analysis) should be performed as part of the annual Corrective Action Effectiveness Reports to evaluate COC trends due to sporadic detections in BMW-10R. No further delineation to the south or southwest is proposed at this time, pending results of trend analysis and future sampling results.

Analytical data for BMW-2 is included on **Table 3.0** for 2012 through 2016; the well was not sampled in 2013. The following summarizes observations on delineation in the vicinity of BMW-2 at the northeast part of the Facility:

- From five to eight COC detections above GWPS were reported for BMW-2 since 2012, with the majority of detections in 2014. All exceedances are essentially at the GWPS concentration, with exception of phenanthrene.
- Phenanthrene detections have varied from 0.4 ug/L to 7 ug/L (4 to 70 times the GWPS), with concentrations decreasing over time.
- Trend graphs presented in the 2016 Annual Report Groundwater Corrective Action Effectiveness (CAE Report, EWI, 2016d) have shown decreasing trends of naphthalene, acenaphthylene and acenaphthene from 2002 to 2016.
- Statistical evaluation (such as Mann Kendall Analysis) should be performed as part of the annual Corrective Action Effectiveness Reports to fully evaluate constituent trends. However, data suggest that BMW-2 is near the edge of the SFZ plume with decreasing concentrations.
- SFZ groundwater flow is to the northwest. The SFZ plume is further delineated by BMW-1, located immediately southeast of BMW-2, and BMW-4 located to the west-northwest of BMW-2. No detections of COCs exceeding GWPS are reported for these wells.

2.2 Secondary Flow Zone Monitoring Wells for Vertical Delineation

Previous investigations and groundwater monitoring data from the SFZ indicates vertical migration (from UFZ to SFZ) may be occurring. Objectives for evaluating vertical contaminant migration potential

are outline in Section E of **Table 5.0**. These included drilling between BMW-10R and BMW-5 (new well BMW-12) to identify likely vertical migration features and investigate for DNAPL occurrence between the UFZ and SFZ horizons, and evaluating the presence of DNAPL in the SFZ laterally outward from BMW-5.

BMW-10R logging from 2005 describes fractures within the vertical horizon to a depth of 108 ft bls between the UFZ and SFZ, with indications of creosote or DNAPL presence. BMW-12 was drilled northeast of BMW-10R to further investigate the vertical extent of impact between BMW-10R and BMW-5 (center Facility), and was planned for progressive downward installation and sampling. As described in section 2.1, BMW-12 encountered DNAPL to a depth of 75 ft bls, well below the previously understood depth of DNAPL the UFZ on the order of 40 ft bls. This well was not completed as planned into the SFZ due to recharging DNAPL. Instead, this well has been used to recover DNAPL; approximately one gallon of DNAPL has been recovered over four manual extraction events. The presence of recharging DNAPL at this depth suggests the potential for deeper vertical impact in this part of the Facility.

In the Facility central area, DNAPL containing fractures were observed to depths of 80 ft bls (from 1285-1206 feet above mean sea level [ft amsl]) during the 1986 installation of the Tertiary Zone well, BMW-5A, which is located near SFZ well BMW-5. (Due to the lack of contaminated groundwater in the Tertiary Zone, no additional investigation of this zone was included in the RAO activities). BMW-5 was reported to contain DNAPL. Deep DNAPL-containing fractures indicate that the potential for deeper hydraulic connection between the UFZ and the SFZ may extend northeastward from the area of BMW-10R. To determine if vertical migration features are present, BMW-13 was installed about 180 ft west-northwest of BMW-5 and progressively videoed and sampled.

A detailed description of observations during installation of BMW-13 was provided in the 2016 *Memorandum Revision 1*. Summary information of geology, hydrogeology, and chemistry are provided on **Table 3.0** and **Table 4.0**, and key information regarding BMW-13 and evaluation of vertical pathways from the UFZ to the SFZ are provided below:

- No secondary porosity features or impact were noted to 80 ft bls during drilling or subsequent video, and very slow recharge was observed. Initial sampling results demonstrated naphthalene and phenanthrene exceeding GWPS by less than 10 times the GWPS.
- Video of the open bore bottom hole revealed a zone of secondary porosity from 143 158 ft bls, but no DNAPL entry. This weathered zone is thicker than the SFZ secondary porosity zone described in previous CAE Reports which indicated the secondary porosity zone was 8 to 10 ft thick at 150 ft bls.
- Horizon sampling of the bottom hole at 90, 150, and 175 ft bls resulted in detections of similar COCs (11 PAHs and four VOCs) with 6 GWPS exceedances at each interval.
 - More COCs were detected and at much higher concentrations than in the 80-ft sample.
 - Concentrations of all analytes were highest at 90 ft, and were lower value at 150 and 175 ft bls; all concentrations remain in the same relative GWPS exceedance ranges.
 - Naphthalene and phenanthrene exhibit the greatest GWPS exceedances at all horizons.
 - Benzene concentrations are much higher (150 160 ug/L) than other SFZ or UFZ wells.
 - The high concentration levels of key Facility COCs in BMW-13 vs. other SFZ wells could result from creosote DNAPL source material near the sampled horizon, i.e., within or near the SFZ in the central Facility area.

Former Tronox Wood Treating Facility, Springfield, Missouri

- Occurrences of impact above and within the SFZ indicate there is potential for vertical connectivity between the UFZ and the SFZ.
 - Similarly impacted groundwater in each BMW-13 horizon indicates connectivity from the 90 ft bls horizon to the 143-158 SFZ zone at this well.
 - The 90-ft horizon is only 10 vertical feet from DNAPL observed in fractures at 80 ft bls in this area. DNAPL was observed at 90 ft bls in BMW-10R to the southwest
 - The Burlington formation is known to exhibit very low permeability both horizontally and vertically, except where secondary porosity (solution features or fractures) is present. A thicker SFZ weathered horizon, observed fracturing to at least 90 ft bls, and similar high concentrations of COCs above and within the SFZ support the presence of hydraulic connectivity between the UFZ and the SFZ in this area.

<u>Conclusions regarding delineation in the SFZ</u>: The lateral extent of the impact within the SFZ has been defined by installation of new SFZ wells and sampling of all SFZ wells. Evaluation of observations and sampling results support vertical connectivity between the UFZ and the SFZ in the southwest and central Facility area.

- Declining COC concentrations to below GWPS and non-detection of COCs in new well BMW-14, with the generally northwest groundwater flow direction, indicate the SFZ is delineated in the southwestern Facility area.
- Significant impact exists in the central Facility area based in DNAPL in BMW-5 and BMW-13 sampling results. The central Facility SFZ area is delineated by no GWPS exceedances in SFZ wells BMW-9 to the southeast and BMW-6 to the northwest, given the northwesterly groundwater flow direction.
- Delineation of the SFZ dissolved phase plume at the northeast Facility area is primarily governed by the northwesterly groundwater flow direction of the SFZ, and depends on plume concentrations and stability at BMW-2. Delineation is supported by BMW-2 exhibiting declining COC concentrations, and lack of GWPS exceedances in BMW-1 to the southeast and BMW-4 to the northwest. A statistical verification of plume stability at BMW-2 (see **Table 6.0**) further supports delineation.
- The presence of DNAPL-bearing fractures to 90 ft bls in the southwest and central Facility area, combined with high concentrations of COCs at 90 ft bls above the SFZ and within the SFZ, and thickening of the SFZ weathered/secondary porosity zone in the central Facility area support vertical connectivity from the UFZ to the SFZ. This supports the RAO Work Plan supposition of a possible northeast-trending fracture zone through the main portion of the Facility.

3. Cross-Sections of Areas of Interest

To supplement evaluation and visualization of vertical delineation data gaps within the UFZ as stated in Section 1.2, as well as hydrogeological relationships and the question of vertical hydraulic connectivity between the UFZ and SFZ discussed in Section 2.2, four cross-sections were created across the Facility and off-site to the northeast. The locations of these transects are presented on **Figure 7.0**. Data used to develop these figures include boring logs from historic and recent monitoring well installation activities (see **Attachment A**), and water level/DNAPL gauging events. The hydrostratigraphic UFZ, SFZ, and intervening less permeable competent bedrock are color-coded on each cross-section, as well as the unconsolidated material and zone of weathered bedrock underlying the soil. Approximate locations of voids in borings are depicted where known from available well logs. UFZ and SFZ well monitoring intervals are shown, or depths noted if below the base of the section. DNAPL occurrence within wells

and interpreted areas of possible residual DNAPL between wells are also indicated, as well as the potentiometric surface.

Cross-Section A-A' (Figure 8.0) is a generalized cross-section from the south Facility to the northern extent of the investigation area near WLMW-11. The following are key observations from this cross-section:

- Top of the bedrock roughly corresponds with the drop in topographic elevation towards the northeast, and bedrock occurs closer to the surface in the north near Woodlawn Spring.
- The UFZ potentiometric surface is within 10 ft of the surface in the southern portion of the section (to about SMW-82), and the SFZ water table is about 35 ft lower. A significant drop in the UFZ water table occurs between SMW-82 and SMW-84 to an elevation just above that of Woodlawn Spring (about 1218 ft amsl) with a significantly flattened hydraulic slope. Woodlawn Spring is the "hydraulic drain" of this hydrogeologic system, and defines the overall UFZ groundwater base flow elevation. As the endpoint of this system, Woodlawn Spring will continue to be monitored as "Outfall 003".
- DNAPL presence in wells, and interpreted residual DNAPL between wells, follows a similar progressively lower pattern of occurrence to the northeast with sloping topography, occurring mostly above the bedrock surface on-Facility (SMW-12C is an exception), but dropping significantly at SMW-84, RW-21, and WLMW-3 to a similar 1208 to 1220 ft amsl horizon as the water table.
- A solution zone/bedding plane feature is depicted southward from Woodlawn Spring at an elevation of about 1220 ft amsl. This feature was identified in several well borings in the 2006 *Woodlawn Spring Study Area Investigation Report*, and described as a solution-enlarged bedding plane with void space up to one foot thick, gently sloping to the elevation of Woodlawn Spring.
 - Similar solution features near this same elevation are in RW-21 and SMW-84. SMW-84 is the only RAO well sufficiently deep to intersect this feature. The feature is projected back to the Facility area on the section. Unfortunately, boring logs for SFZ wells BMW-2 and BMW-9 do not contain sufficient information to evaluate the presence of this feature further to the southwest from SMW-84.
 - This feature is likely controlling the water table, and appears related to DNAPL occurrence. This supports it being a horizontal migration pathway, and as such it represents the lowermost extent of the UFZ.
 - Not knowing if this solution feature migration pathway extends to the southwest beneath the Facility further defines the data gap for vertical delineation noted in Section 1.1. Whether the feature remains planar at 1220 ft amsl or stair-steps upward following topography, investigation of this vertical zone for its presence at the Facility is warranted. This zone for investigation is noted on the cross-section.
- While the 1220 ft amsl solution zone/bedding plane may be a lower migration pathway for DNAPL and impacted groundwater, the shallower UFZ zone of weathered bedrock and solution voids is still recognized as an important horizon to continue to evaluate as a contaminant migration pathway both on-facility and off-facility.

Cross-Section B-B' (Figure 9.0) transects the south-central Facility east-northeast from BMW-10R in the southwest to SMW-77 on the GCHD property. A portion of the boring for well BMW-5A showing occurrence of DNAPL-containing fractures has been projected into the section, and DNAPL-related fractures in BMW-10R are also depicted. The following are key observations from this cross-section:

Former Tronox Wood Treating Facility, Springfield, Missouri

- A dip in the top of competent bedrock and topographic elevation is present around SMW-19. This is the approximate area of intersection of two interpreted fracture traces just west of SMW-12C, and this dip and associated thickening of the weathered bedrock layer may support existence of this fracturing.
- Mobile DNAPL is present in SMW-12C, which recharges and is manually recovered on a routine basis. The 1260 to 1250 ft amsl depth of the screened interval in SMW-12C is significantly deeper than the shallower recovery wells and monitoring wells at the Facility which only target impact occurring in the upper portions of weathered bedrock. This deeper DNAPL occurrence in SMW-12C indicates connectivity deeper within the UFZ than the depth of the surrounding wells, and may be related to deeper UFZ migration pathway potential noted in Cross-Section A-A'. Of note, SMW-77 monitors a similar deeper UFZ horizon and contains no impact.
- DNAPL-containing fractures in BMW-10R, BMW-5A, and the DNAPL-producing interval in BMW-12visually support the potential UFZ-SFZ connectivity potential described in Section 2.2. This zone of deeper hydraulic connectivity extends from the southwest to central Facility area, and the vertical extent includes the elevation of the potential deep UFZ horizontal migration pathway noted in Cross-Section A-A').
 - Fractures with DNAPL occur from 45 108 ft bls (1258.5 1195.5 ft amsl) in BMW-10R.
 - DNAPL entry occurs from elevation 1266 to at least 1226 ft amsl in BMW-12.
 - Fracturing with DNAPL occurs from 40 80.5 ft bls (1246.6 1206.1 ft amsl) in BMW-5A.

Cross-Section C-C' (Figure 10.0) is a northwest-southeast trending profile across the northeast corner of the Facility. The following are key observations from this cross-section:

- The thickened zone of weathered bedrock from west of SMW-3 to the eastern edge of the section is a lateral profile across the Clifton Drainage hydrogeological feature. Residual DNAPL occurs within this weathered zone and deeper in bedrock (~1260 ft amsl) in this zone.
 - The screened interval of SMW-80, located immediately northeast, is projected on this profile to show the deepening of the Clifton Drainage progressing to the northeast.
 - The screen depth of SMW-84, further to the northeast, is also depicted on the section. This well is the closest well to the Facility that intersects the deeper 1220 ft amsl migration pathway feature. This depiction is done to show the vertical distance (about 30 ft) from known on-Facility UFZ impact to this lower migration zone, if it extends southwestward from SMW-84 at the same elevation. This is the vertical zone warranting further investigation noted for Cross-Section A-A'.
- The SFZ is below the base of the cross-section, but screen intervals for BMW-1 and BMW-4 are noted on the section. There is approximately 50 ft of vertical separation between the SFZ wells screened intervals and the base of impacted UFZ wells in the section.
- The potentiometric surfaces for the UFZ and SFZ are also shown, and are vertically separated by 22 ft in the east and 36 ft to the west, due to the westerly slope of the SFZ water table (groundwater flow in the SFZ is to the northwest)

Cross-Section D-D' (Figure 11.0) shows a northeasterly transect from the Facility near SMW-12C off-site to SMW-86. This is a similar profile to section A-A' (Figure 8.0), but provides more detail on the horizons of likely DNAPL impact within the weathered bedrock zone in the RAO UFZ wells. The following are key observations from this cross-section:

Former Tronox Wood Treating Facility, Springfield, Missouri

- The topography, bedrock surface, and water table all slope downward to the northeast. SMW-87 is projected onto the section from a higher topographic area to the northwest, resulting in the "stickup" of its well casing. The transect cuts across the Clifton Drainage at a shallow angle, resulting in an artificially expanded width to this feature.
- A significant increased thickness of the weathered bedrock is apparent, and directly related to the Clifton Drainage feature. In addition, this cross-section is approximately aligned with the direction of northeast-trending interpreted fractures that likely contributed to the formation of the Clifton Drainage karst trough. Increased weathering in the bedrock related to fracturing would be expected, as observed on this cross-section.
- Although SMW-87 is located some distance northwest of the edge of the Clifton Drainage, there is a similar thick weathered bedrock horizon developed at its location. This increased weathered zone supports the possibility that SMW-87 is located on a fracture zone as noted in Section 1.1.

4. TarGOST Investigation Summary

The 2016 *Memorandum Revision 1* included a summary of the 47 TarGOST borings that were advanced during the RAO historical source area residual DNAPL investigation (see **Figure 12.0**). TarGOST borings were completed on the Facility only, due to lack of access to off-site locations during TarGOST contractor availability. A Geoprobe soil boring (SB-B-2) was completed on the GCHD property east of SMW-12C for delineation of residual DNAPL to the east. No additional RAO work was completed regarding residual DNAPL and the TarGOST investigation; however, this information is included to have all phases of RAO field work summarized in this memorandum.

TarGOST results, confirmed by laboratory analytical results, indicate that an approximate 90,000 squarefoot area of creosote appears present within, west, and south of the former pre-RCRA cell in the southcentral Facility area at depths up to 16 ft bls. This indicates that not all impacted soil was removed during historical remediation of the pre-RCRA cell. TarGOST data also indicate that small pockets of residual creosote also appear present in the area of SMW-12C along the east Facility border, and at the former retort production area near the south Facility border. Soil borings and soil sampling may be warranted in the future as part of evaluating remedial action options if needed to better refine the nature and extent of contamination in this area.

5. Source Area Surficial Soil for Comparison with Screening Levels

Three surface soil samples were collected from historical source areas (Landfarm Area, Drip Track Area, and Black Tie Area) to determine if residual COCs in soil may be present that exceed the USEPA Regional Screening Level (RSL)-Industrial Soil. Locations are depicted on **Figure 13.0**, which also includes summary tables of analytical data for each sample.

- SS-1 (south side Drip Track Area near TG-34) at 1.5 ft bls: 17 PAHs and four BTEX detections, with five PAHs exceeding RSL-Industrial Soil.
- SS-2 (south-central Landfarm Area, at highest historical concentration location) at 1.25 ft bls: 19
 PAHs and five BTEX detections, with eight PAHs exceeding RSL-Industrial Soil.
- SS-3 (Black Tie Area): two aliquots from 1.25 ft bls: 16 PAHs and no BTEX detections, with one PAH (benzo[a]pyrene) slightly exceeding (by less than two times) the RSL-Industrial Soil.

No additional RAO work was completed regarding near-surface soil impact investigation; however, this information is included to have all phases of RAO field work summarized in this memorandum. Concentrations of PAHs in the Landfarm Area have remained elevated; therefore, continued maintenance of the surface cap is required to achieve the established remedial action objectives.

Because soil in the Drip Track Area exceeds the RSL-Industrial Soil, additional investigation of the surficial zone is warranted to define nature and extent and allow comparison with screening levels.

6. Recommendations for Additional RAO Activities

The RAO investigation completed to date has greatly improved the understanding of the conceptual model of hydrogeology and the nature and extent of contamination. The recommendations described below focus on refining components of the conceptual model that could materially affect the evaluation and selection of remedial alternatives in the subsequent phase of the RAO process.

The TarGOST investigation identified residual creosote in the area of the pre-RCRA cell. Further investigation of this area is best deferred until a time when DQOs related to remedy evaluation and selection can be incorporated.

Uncertainty of source(s) for DNAPL observed in wells RW-21 and WL MW-3 near Kearney Street is an ongoing data gap regarding DNAPL plume delineation. Collection of DNAPL samples for fingerprint analysis would provide information to help evaluate source delineation.

We recommend installing at least two additional UFZ wells to the northwest and north of the existing network to investigate potential plume migration along interpreted fracture traces. This will verify delineation of the plume to the northwest and north. In addition, understanding the nature and connectivity of the bedding/solution feature in the northeast corner of the Facility could affect remedy evaluation and selection because it is not known whether this is a significant migration pathway from source areas into downgradient areas of the plume.

Delineation of the SFZ dissolved phase plume is supported by a northwesterly groundwater flow direction within the SFZ, no detections exceeding GWPS in BMW-6 (which is hydraulically downgradient of the highest concentration area of the SFZ plume), and a statistically decreasing concentrations at BMW-2. However, the logical direction for any plume expansion not identified would be in the hydraulically downgradient direction. The Multistate Trust will evaluate the need for any additional wells to delineate the SFZ dissolved phase plume in discussion with MoDNR.

The following specific RAO activities are proposed:

- 1. Collect DNAPL samples from wells RW-21 and WL MW-3, and on-facility wells SMW-12C (east Facility) and RW-9 (pre-RCRA cell) for fingerprint analyses to evaluate historical Facility releases as a source of the DNAPL in this north Clifton Drainage area.
 - <u>Objective</u>: Use known on-facility DNAPL chemical fingerprinting as a basis for evaluating the contribution of facility creosote to off-facility DNAPL occurrences where other potential DNAPL sources are suspected.
- <u>Investigative Approach</u>: Collect and perform fingerprint analysis of DNAPL from these four wells, and compare the fingerprint chemical patterns for RW-21 and WL MW-3 to patterns from SMW-12C and RW-9 for similarities and differences.
- Install two UFZ monitoring wells to approximately 1210 ft amsl to investigate the potential for contaminant migration pathways northwest and northeast of known impact in the Clifton Drainage.
 - <u>Objective</u>: Delineate the northwestern and northeastern extent of UFZ impact utilizing possible migration pathways related to interpreted northwest and northeast fractures emanating from the known Clifton Drainage area of UFZ impact.

Former Tronox Wood Treating Facility, Springfield, Missouri

- <u>Investigative Approach</u>: Install one UFZ monitoring well near Kearney Street northwest of SMW-87, and install one UFZ northeast of SMW-87 and northwest of SMW-84 near Kearney Street, based on northeast and northwest interpreted fracture intersections (see **Figure 14.0**). Drill the wells to approximately 30 ft bls to check for upper UFZ water production before extending the boring to a lower UFZ depth of 2010 ft amsl to target the 1220 ft amsl bedding/solution horizon. If water is produced at only one horizon, the well will be constructed to monitor that zone. If water is produced at both the upper and lower UFZ zones, two co-located monitoring wells are recommended so that each interval can be separately monitored.
- 3. Install one on-facility deep UFZ monitoring well to approximately 1215 ft amsl to investigate the potential for contaminant migration pathways deeper than the previously defined depth of the UFZ (see **Figure 14.0**).
 - <u>Objective</u>: Delineate the southwestern extent of the 1220 ft amsl deep UFZ migration pathway, and determine if there is potential for deeper UFZ vertical extent of DNAPL and dissolved plume underlying the Facility.
 - <u>Investigative Approach</u>: Install one deeper UFZ monitoring well near northeast Facility border targeting similar depth as SMW-84 and cased through upper weathered bedrock/soil interface.
- 4. A statistical Mann-Kendall Analysis of Complete a statistical evaluation of SFZ perimeter wells to determine plume trends as part of the 2017 Corrective Action Effectiveness Report (update note: this analysis has been performed for BMW-2; see Table 6.0).
 - <u>Objective</u>: Substantiate delineation of the SFZ plume by verifying decreasing concentration tends at the northeastern and southwestern extents of the plume.
 - <u>Investigative Approach</u>: Perform Mann-Kendall and graphical analysis of analytical data from BMW-2 and BMW-10R for COCs that define Facility-related groundwater plume.

Table 5.0 (RAO Data Quality Objectives) has been revised with updates to the RAO DQOs that reflect these proposed additional investigation actions. Pending approval from the MoDNR of these conceptual actions, a work plan addendum formally detailing these activities will be developed and submitted.

7. References

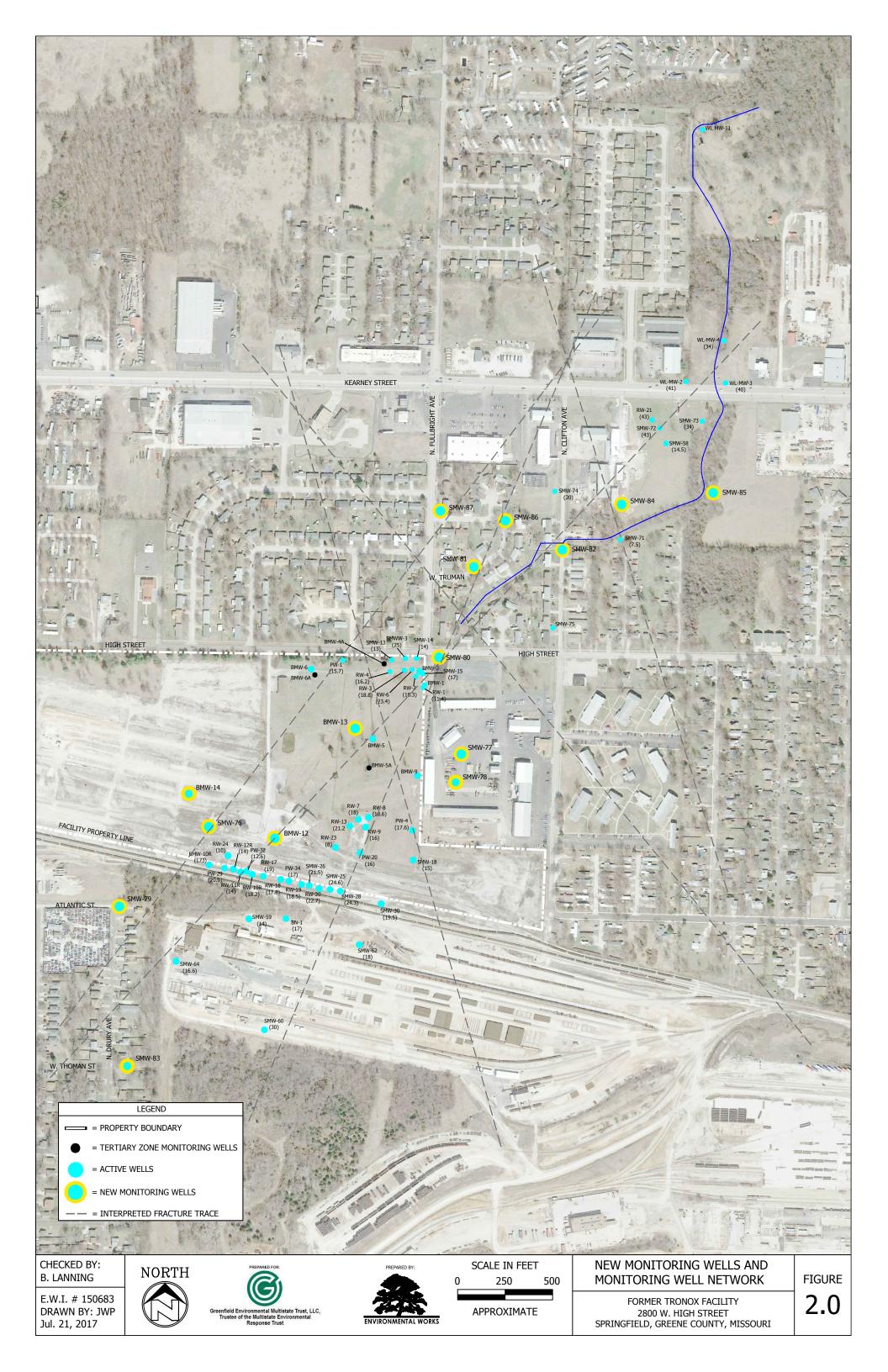
EWI, 2017. Indoor Air Work Plan, Former Tronox Facility, 2800 West High Street, Springfield, Missouri, RCRA Permit Number M0D007129406, Environmental Works Inc. (EWI), May 4, 2017

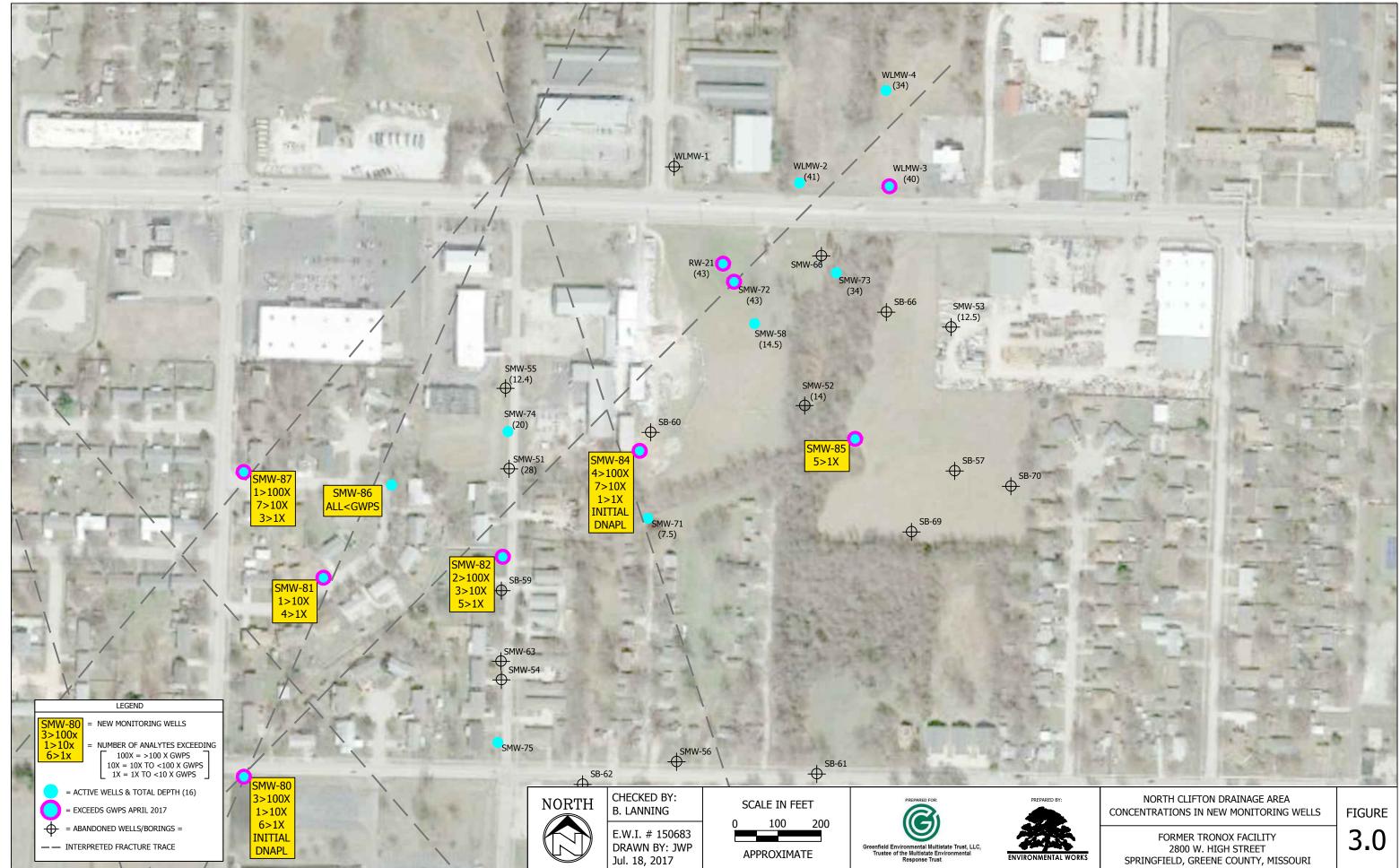
EWI, 2016a. Remedial Action Optimization Status Memorandum Revision 1, Former Tronox Facility, 2800 West High Street, Springfield, Missouri, RCRA Permit Number M0D007129406, Environmental Works Inc. (EWI), December 12, 2016

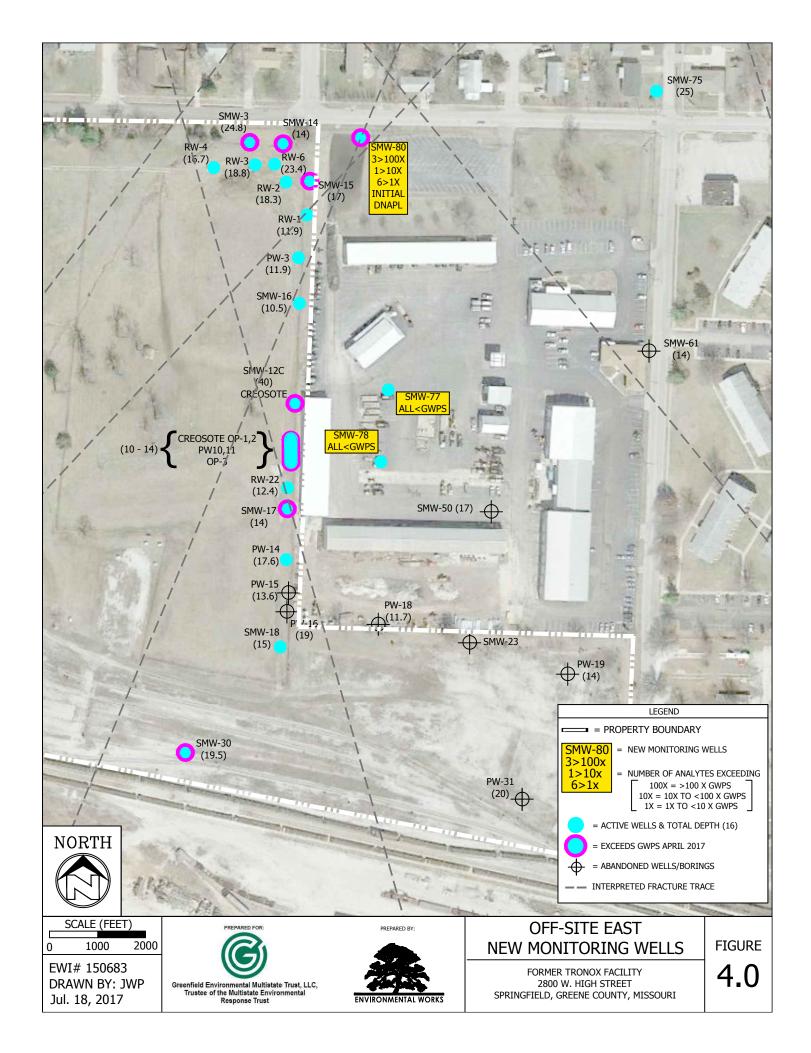
EWI, 2016b. Remedial Action Optimization Work Plan, Former Tronox Facility, 2800 West High Street, Springfield, Missouri, RCRA Permit Number M0D007129406, Environmental Works Inc. (EWI), August 8, 2016

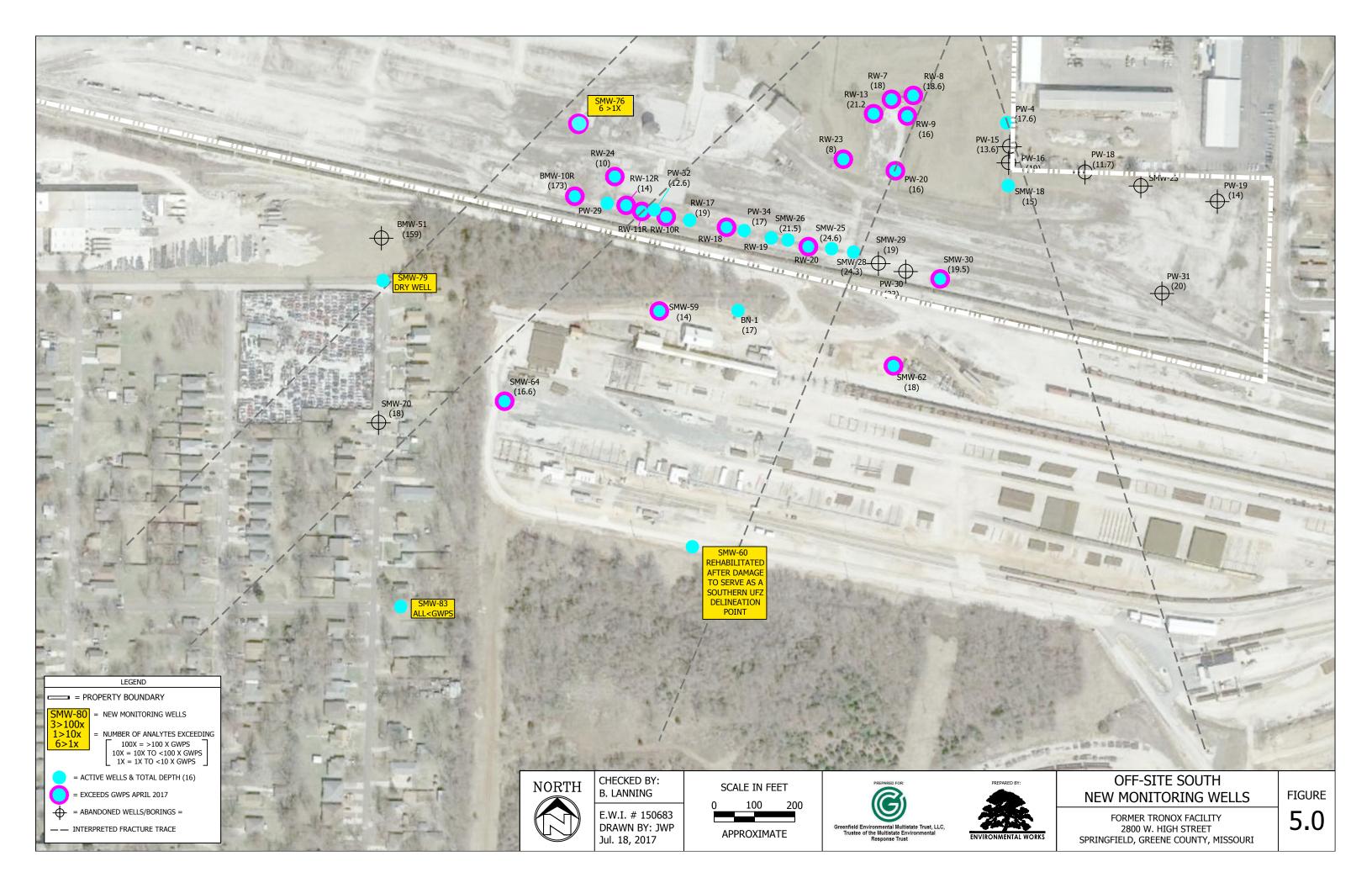
EWI, 2016c. RAO Work Plan Addendum to Remedial Action Optimization Work Plan, Former Tronox Facility, 2800 West High Street, Springfield, Missouri, RCRA Permit Number M0D007129406, December 12, 2016.

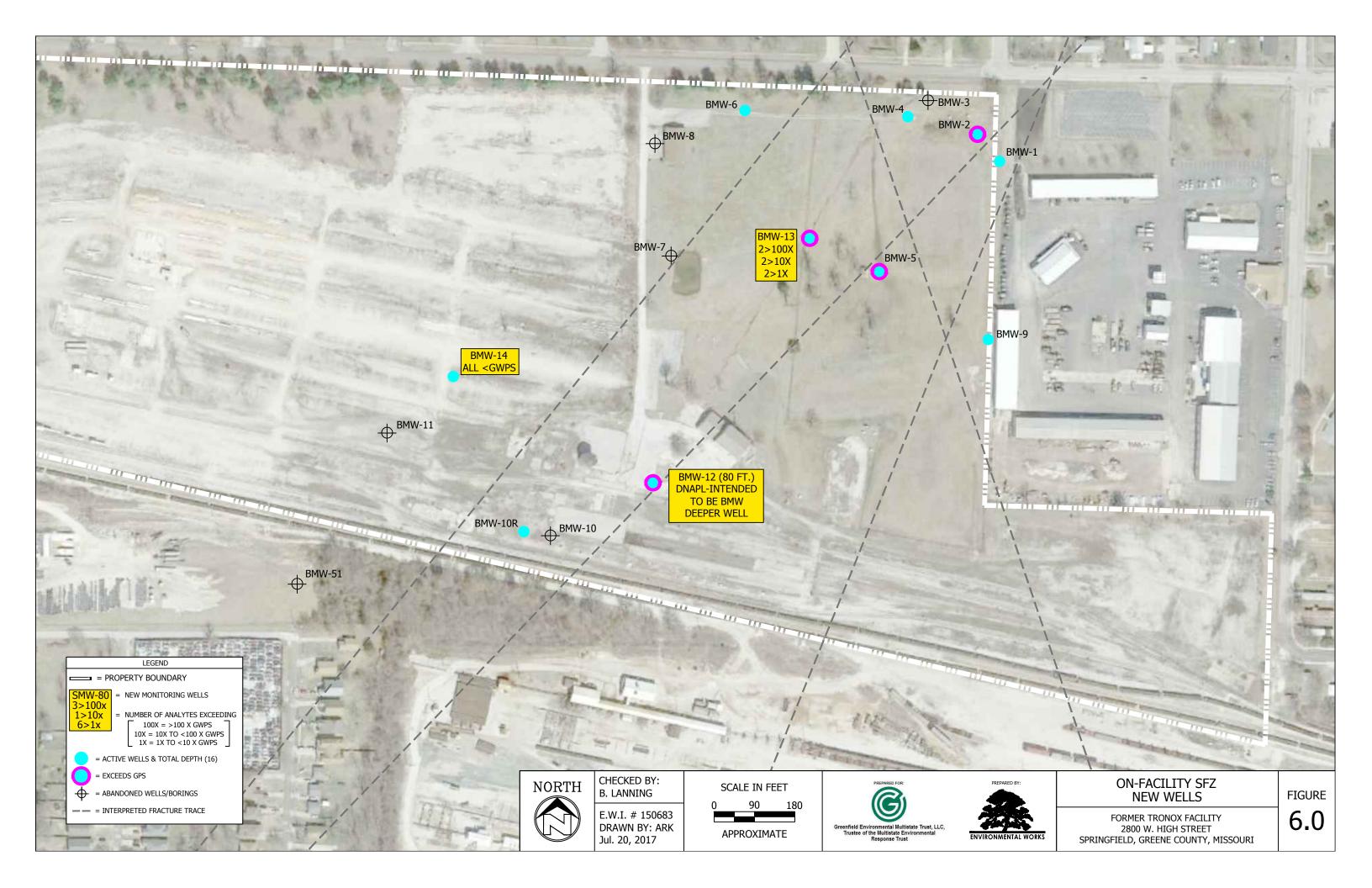
EWI, 2016d. 2016 Annual Report: Groundwater Corrective Action Effectiveness, Former Wood Treating Facility, Springfield, Missouri, March 1, 2016

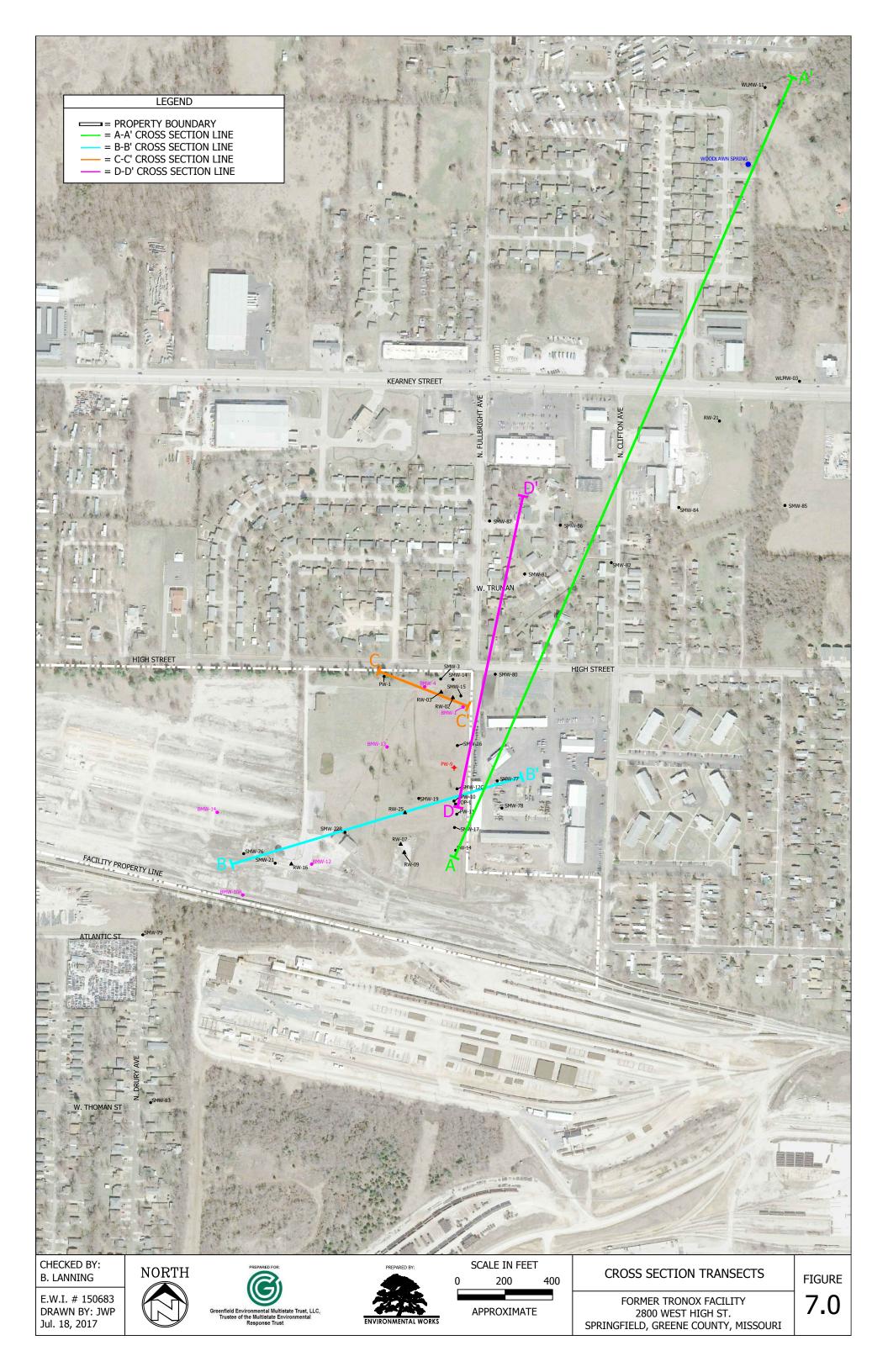

Tronox, 2006. Woodlawn Spring Study Area Investigation Report, Springfield, Missouri, Tronox LLC, March 2006

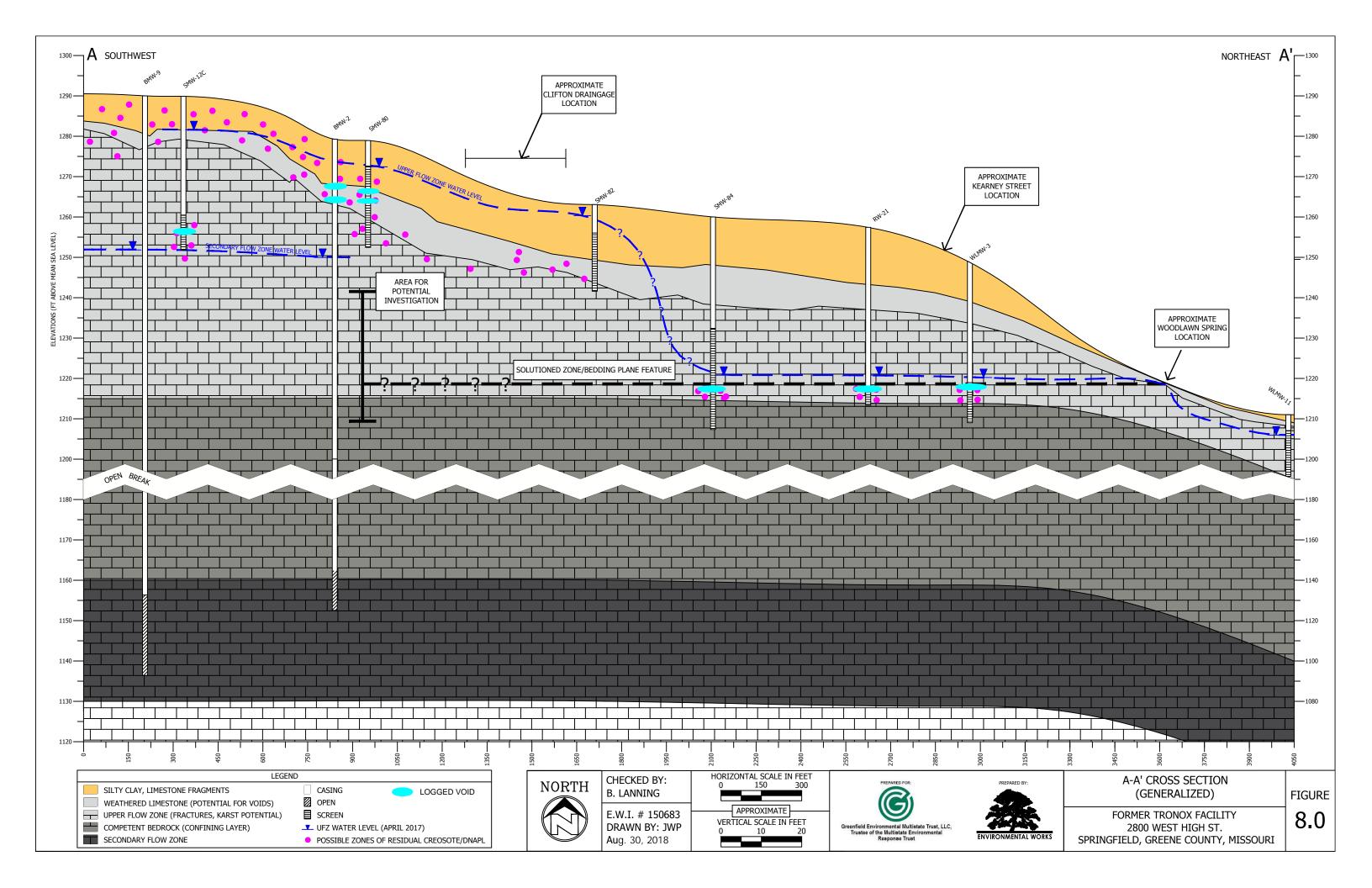

FIGURES

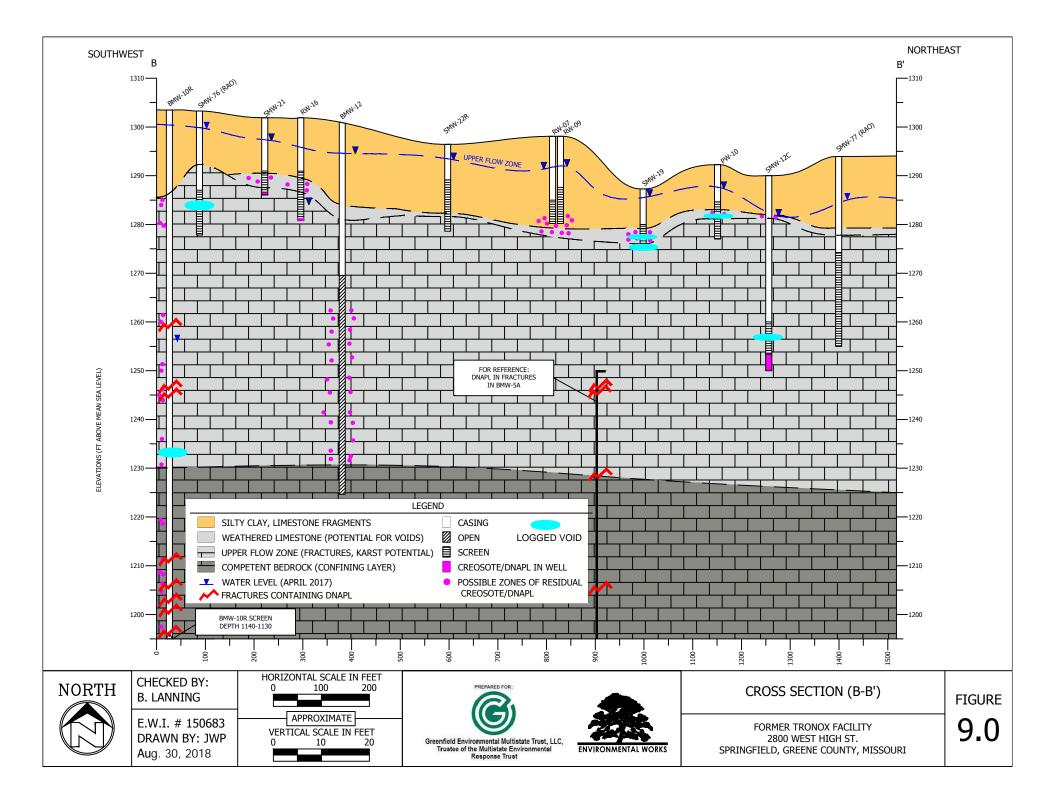

REMEDIAL ACTION OPTIMIZATION UPDATE AND MEMORANDUM

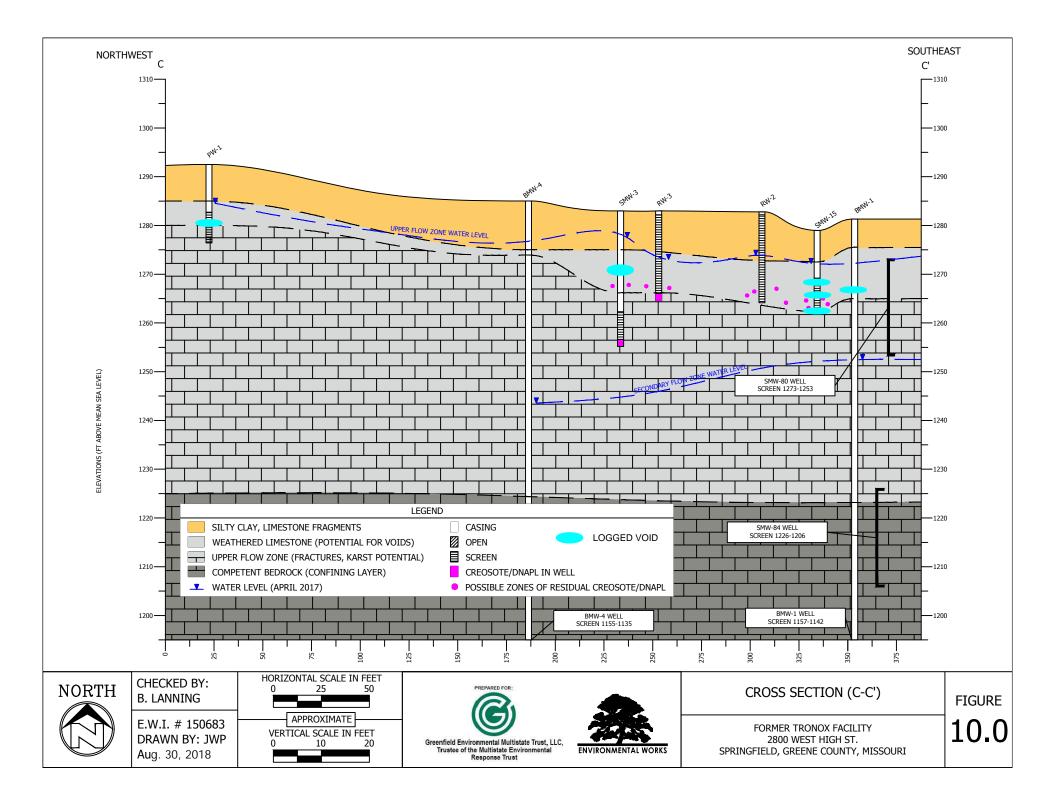

Former Tronox Facility 2800 High Street, Springfield, Missouri

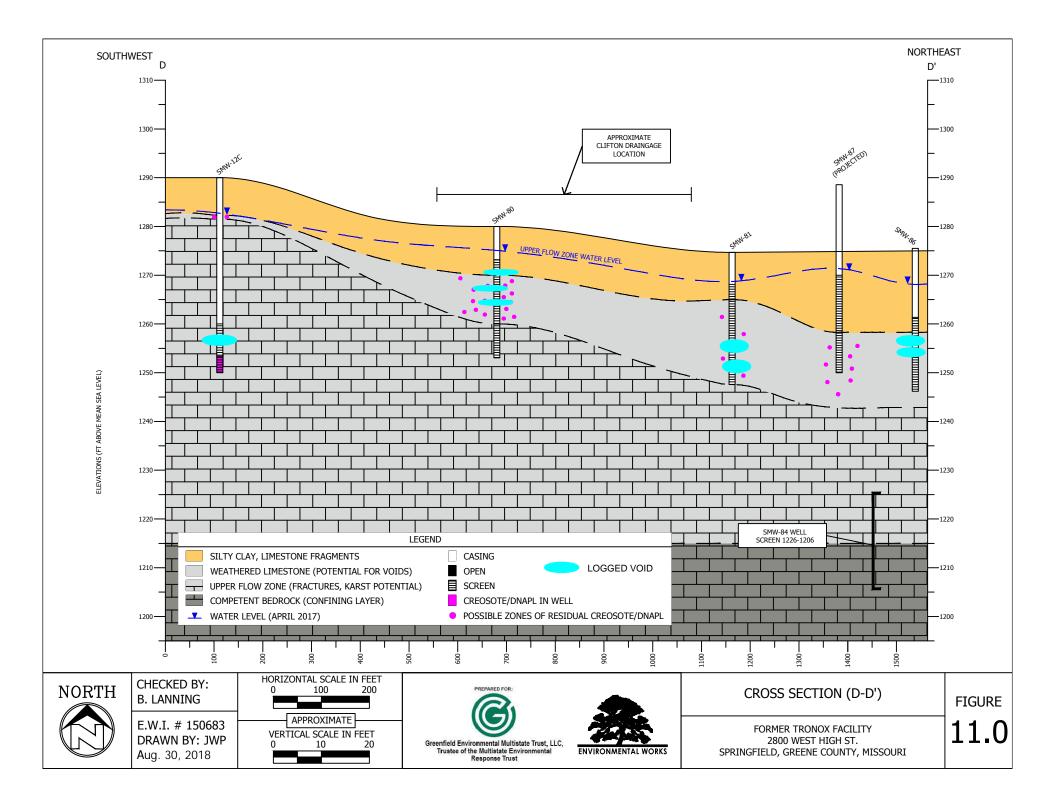


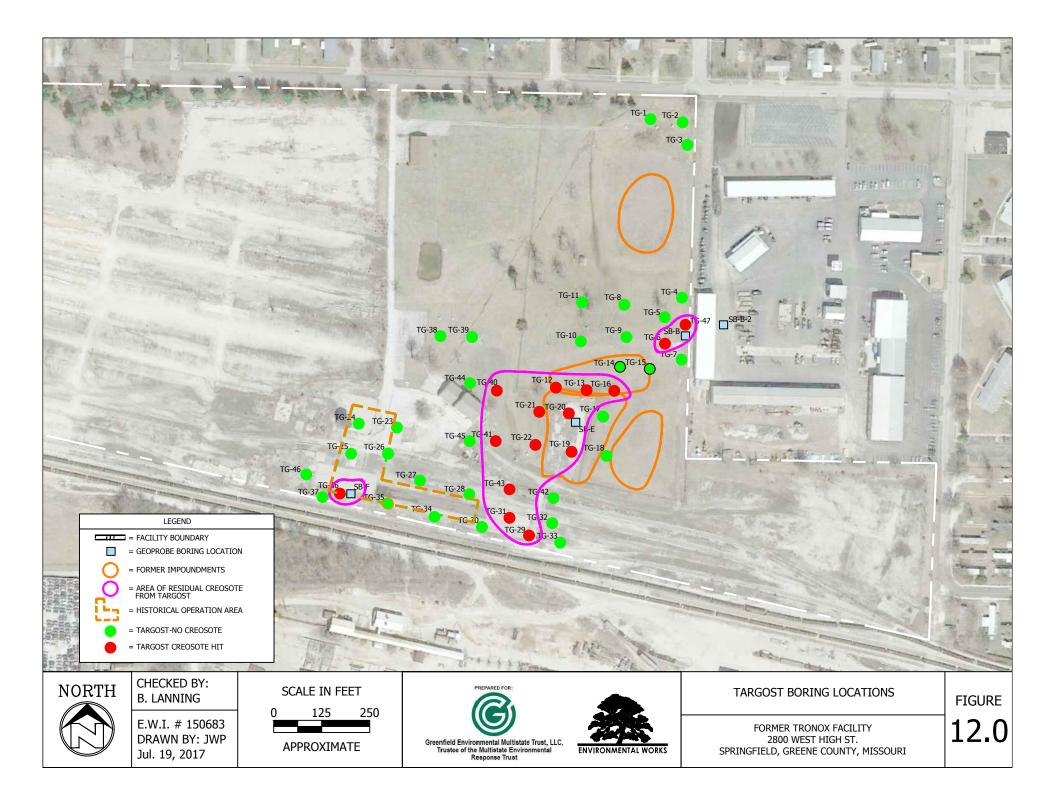


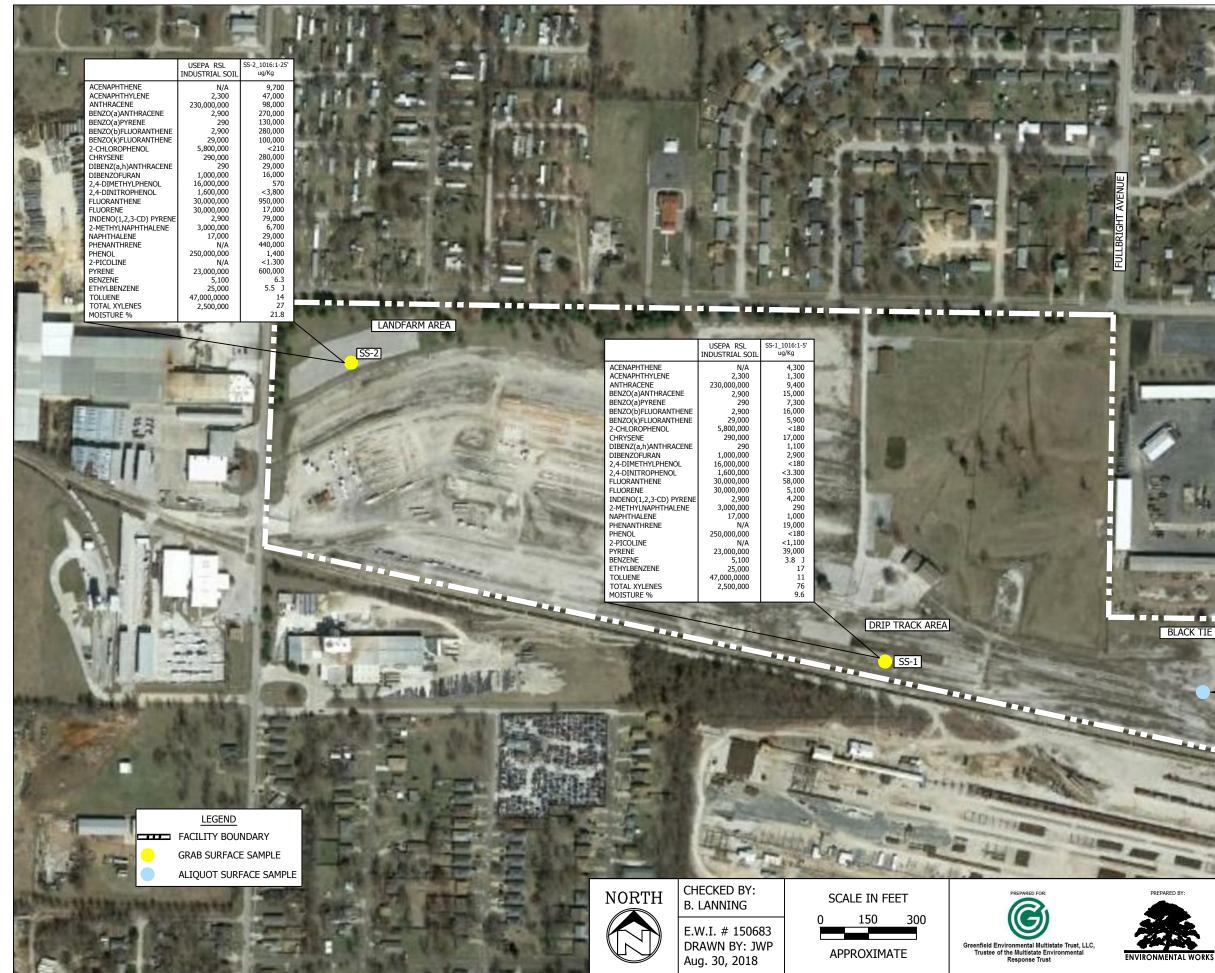






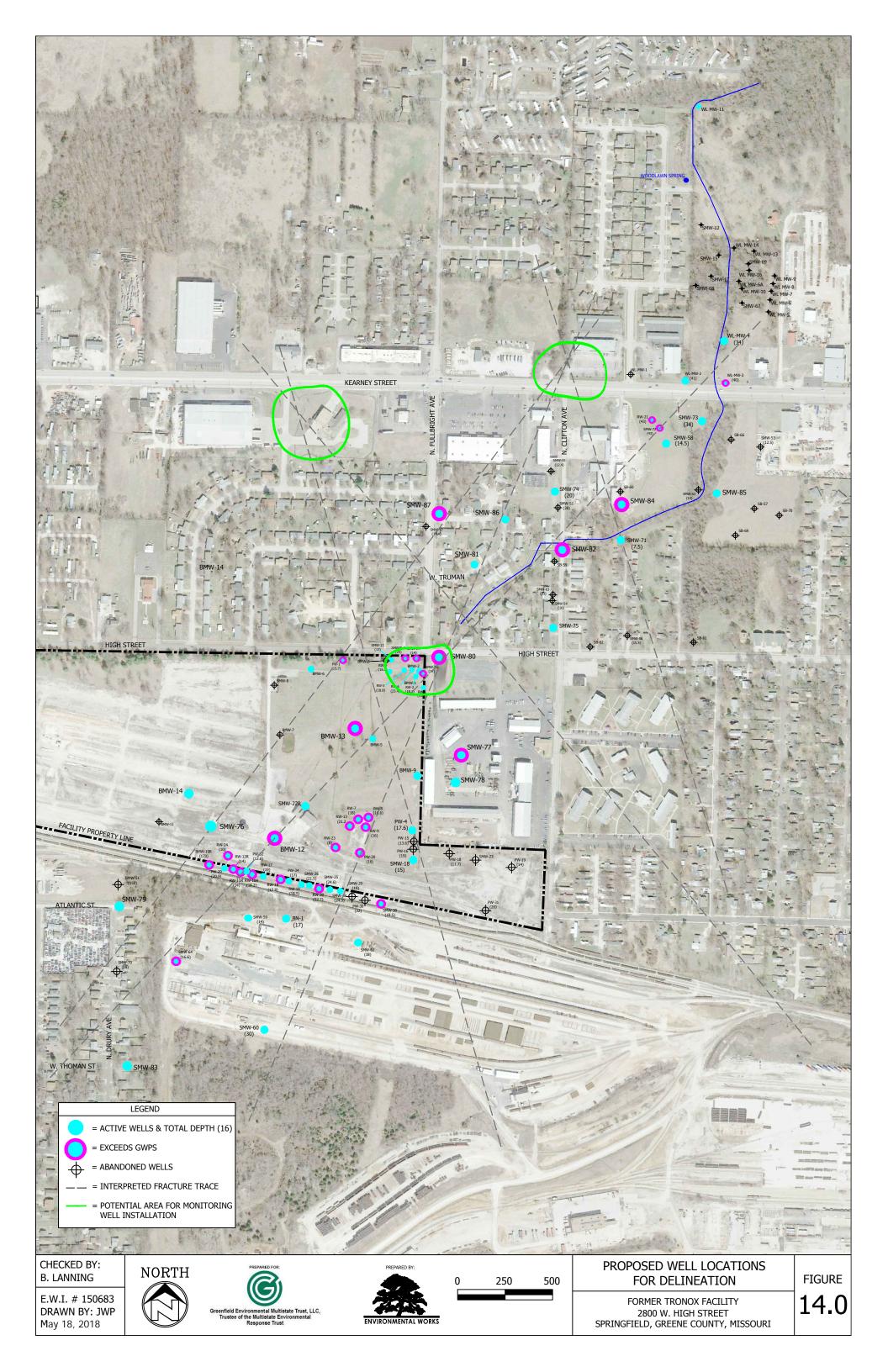






HIGH STREET

			the second se	
		USEPA RSL	SS-3_1016:1-25'	
		INDUSTRIAL SOIL	ug/Kg	Sec. 2
	ACENAPHTHENE	N/A	8 J	1000
	ACENAPHTHYLENE	2,300	190	
	ANTHRACENE	230,000,000	110	1000
	BENZO(a)ANTHRACENE	2,900	240	and the second
	BENZO(a)PYRENE	290	420	1000
	BENZO(b)FLUORANTHENE	2,900	1,000	T. Part Land
_	BENZO(k)FLUORANTHENE	29,000	200	Artis Marcal
-	2-CHLOROPHENOL	5,800,000	<19	
_	CHRYSENE	290,000	310	Part of the local division of the local divi
	DIBENZ(a,h)ANTHRACENE	290	140	COLUMN 1
	DIBENZOFURAN	1,000,000	<19	1000
	2,4-DIMETHYLPHENOL	16,000,000	<19	
	2,4-DINITROPHENOL	1,600,000	<340	
10	FLUORANTHENE	30,000,000	260	1.000
1	FLUORENE	30,000,000	18 J	
	INDENO(1,2,3-CD) PYRENE	2,900	400	
	2-METHYLNAPHTHALENE	3,000,000	18 J	
	NAPHTHALENE	17,000	36	1000
-	PHENANTHRENE	N/A	61	-
	PHENOL	250,000,000	<19	- w
	2-PICOLINE	N/A	<110	1000
10	PYRENE	23,000,000	270	3 9 29
	BENZENE	5,100	<2.2	of the second
	ETHYLBENZENE	25,000	<2.2	and the second second
	TOLUENE	47,000,0000	<2.2	Also and
	TOTAL XYLENES	2,500,000	<5.4	C COMPANY
	MOISTURE %		11.7	1.12100


1.1 BLACK TIE AREA

> SS-3 ALIQUOT

> > SURFICIAL SOIL SAMPLES

FORMER TRONOX FACILITY 2800 W. HIGH STREET SPRINGFIELD, GREENE COUNTY, MISSOURI

FIGURE 13.0

TABLES

REMEDIAL ACTION OPTIMIZATION UPDATE AND MEMORANDUM

Former Tronox Facility 2800 High Street, Springfield, Missouri

Well Name	Designation or Pumping Center	Install Date	Well Purpose	Casing Diam (in.)	Casing Type	Screen Type	Slot Size	Stickup* (ft.)	Screen Length (ft.)	Sump Length (ft.)	Measured Total Depth (ft.)	TD Elev	Top of Screen/Open Bore Elev	Pad Elevation (ft.)**	Top of Casi Elevatior (ft.)**
							ACTIVE \	WELLS							
							Upper Flo								
BN-1		х	Monitor	х	х	х	х	2.07	5.0	0.00	20.00	1276.83	1281.83	х	1296.83
OP-1		8/20/1994	Piezometer	2	PVC	PVC	0.01	4.35	9.7	0.00	13.92	1283.11	1292.81	1292.68	1297.03
OP-2		3/20/1994	Piezometer	2	PVC	PVC	0.01	3.94	9.2	0.00	17.69	1280.73	1289.93	1294.48	1298.42
OP-3		3/20/1994	Piezometer	2	PVC	PVC	0.01	3.81	8.7	0.00	17.95	1279.22	1287.92	1293.36	1297.17
PW-1		2/19/1986	Piezometer	2	PVC	PVC	0.01	2.07	5.0	0.00	18.39	1277.78	1282.78	1294.10	1296.17
PW-3		3/4/1986	Piezometer	2	PVC	PVC	0.01	2.37	5.0	0.00	14.26	1272.68	1277.68	1284.57	1286.94
PW-10		2/27/1986	Piezometer	2	PVC	PVC	0.01	1.90	5.0	0.00	15.26	1278.91	1283.91	1292.27	1294.17
PW-11	PC-2	2/20/1986	Piezometer	2	PVC	PVC	0.01	2.47	5.0	0.00	17.04	1278.91	1283.91	1293.48	1295.95
PW-14		2/25/1986	Piezometer	2	PVC	PVC	0.01	2.30	5.0	0.00	19.84	1280.14	1285.14	1297.68	1299.98
PW-20	POC	3/30/1987	Piezometer	2	PVC	PVC	0.01	1.68	5.0	0.00	17.35	1281.28	1286.28	1296.95	1298.63
PW-29		6/30/1987	Piezometer	2	PVC	PVC	0.01	2.17	5.0	0.00	22.67	1282.42	1287.42	1302.92	1305.09
PW-32		12/19/1988	Piezometer	2	PVC	PVC	0.01	2.20	5.0	0.00	19.00	1286.16	1291.16	1302.96	1305.16
PW-34		12/20/1988	Piezometer	2	PVC	PVC	0.01	2.24	5.0	0.00	22.08	1281.94	1286.94	1301.78	1304.02
RW-01	PC-1	9/1/1985	Recovery	36	GAL	GAL	0.03	0.95			12.33			1282.57	1283.52
RW-02	PC-1	9/1/1985	Recovery	36	GAL	GAL	0.03	1.35			19.50			1281.58	1282.93
RW-03	PC-1	9/1/1985	Recovery	36	GAL	GAL	0.03	0.89			19.75			1282.63	1283.52
RW-04	PC-1	9/1/1985	Recovery	36	GAL	GAL	0.03	1.27			17.92			1285.58	1286.85
RW-05	PC-3	9/1/1985	Recovery	36	GAL	GAL	0.03	1.40			13.58			1287.62	1289.0
RW-06	PC-1	4/23/1987	Recovery	36	GAL	GAL	0.03	0.62			24.00			1281.98	1282.6
RW-07	PC-5	10/1/1990	Recovery	6	B.IRON	GAL	0.03	0.64			18.67			1297.77	1298.4
RW-08	PC-5	10/1/1990	Recovery	6	B.IRON	GAL	0.03	0.30			18.92			1298.25	1298.5
RW-09	PC-5	10/1/1990	Recovery	6	B.IRON	GAL	0.03	0.26			18.25			1297.84	1298.1
RW-10R	PC-7	3/16/2004	Recovery	6	SS	SS	0.02	0.50			18.76			1301.99	1302.4
RW-11R	PC-7	3/16/2004	Recovery	6	SS	SS	0.02	0.45			14.90			1302.41	1302.8
RW-12R	PC-7	3/16/2004	Recovery	6	SS	SS	0.02	0.52			14.69			1302.51	1303.0
RW-13	PC-5	7/17/1991	Recovery	6	GAL	GAL	0.02	0.29			21.50			1295.36	1295.6
RW-14	PC-4	7/18/1991	Recovery	6	GAL	GAL	0.02	0.45			18.33			1296.59	1297.04
RW-15	PC-4	7/18/1991	Recovery	6	GAL	GAL	0.02	0.47			16.75			1295.52	1295.9
RW-16	PC-6	7/20/1991	Recovery	6	GAL	GAL	0.02	0.41			21.25			1302.37	1302.7
RW-17	PC-7	7/21/1991	Recovery	6	GAL	GAL	0.02	0.33			19.50			1301.05	1301.3
RW-18	PC-7	7/21/1991	Recovery	6	GAL	GAL	0.02	0.34			18.12			1301.05	1301.3
RW-19	PC-7	7/21/1991	Recovery	6	GAL	GAL	0.02	0.39			18.90			1301.09	1301.4
RW-20	PC-7	7/22/1991	Recovery	6	GAL	GAL	0.02	0.42			23.00			1301.51	1301.9
RW-21	MoDNR	4/27/1994	Monitor	6	Carbon Steel	GAL	0.03	-0.49	5.0	0.00	44.50	1213.40	1218.40	1258.39	1257.9
RW-22	PC-2	3/20/1994	Recovery	24	GAL	GAL	х	2.29			16.00			1294.15	1296.4
RW-23	PC-5	9/1/1995	Recovery	24	GAL	GAL	х	0.86			9.00			1298.07	1298.9
RW-24	PC-7	3/1/1996	Recovery	24	GAL	GAL	х	1.12			11.00			1302.22	1303.3
RW-25	PC-3	х	Recovery	х	x	x	х	0.49						1288.67	1289.1
SLMW-6		12/29/1987	Monitor	2	SS	SS	х	2.02	5.0	1.85	29.08	1296.63	1301.63	1323.69	1325.7
SMW-1		2/5/1982	Monitor	4	PVC	PVC	х	2.35	17.0	0.00	26.63	1272.73	1289.73	1297.01	1299.3
SMW-3		11/17/1981	Monitor	4	PVC	PVC	х	2.34	10.0	0.00	27.18	1258.91	1268.91	1283.75	1286.0
SMW-11B	POC	4/17/1985	Monitor	х	PVC	PVC	0.01	2.23	2.0	0.00	15.00	1278.92	1280.92	1291.69	1293.9
SMW-12C		4/18/1985	Monitor/Recovery	2 & 4	PVC	PVC	0.01	2.22	10.0	0.00	42.07	1250.84	1260.84	1290.69	1292.9
SMW-13	POC	3/6/1985	Monitor	2	SS	SS	0.01	2.43	5.0	0.00	15.29	1274.56	1279.56	1287.42	1289.8
SMW-14	POC	3/6/1985	Monitor	2	SS	SS	0.01	0.95	5.0	0.00	15.26	1266.28	1271.28	1280.59	1281.5
SMW-15	POC	3/4/1985	Monitor/Recovery	2	SS	SS	0.01	2.22	5.0	0.00	19.10	1263.71	1268.71	1280.59	1282.8

Well Name	Designation or Pumping Center	Install Date	Well Purpose	Casing Diam (in.)	Casing Type	Screen Type	Slot Size	Stickup* (ft.)	Screen Length (ft.)	Sump Length (ft.)	Measured Total Depth (ft.)	TD Elev	Top of Screen/Open Bore Elev	Pad Elevation (ft.)**	T	op of Casing Elevation (ft.)**
SMW-16	POC	9/14/1988	Monitor	2	SS	SS	х	2.25	5.0	2.60	15.22	1274.74	1279.74	1287.71		1289.96
SMW-17	POC	9/15/1988	Monitor	2	SS	SS	0.01	2.20	5.0	0.00	18.90	1278.06	1283.06	1294.76		1296.96
SMW-18	POC	9/15/1988	Monitor	2	SS	SS	x	2.37	5.0	0.00	20.26	1281.25	1286.25	1299.14		1301.51
SMW-19		9/16/1988	Monitor/Recovery	2	SS	SS	0.01	2.59	5.0	0.80	16.29	1273.78	1278.78	1287.48		1290.07
SMW-20		4/22/1990	Monitor	2	PVC	PVC	0.01	2.18	4.0	0.80	23.32	1280.91	1284.91	1302.05		1304.23
SMW-21		4/23/1990	Monitor/Recovery	2	PVC	PVC	0.01	2.52	4.0	0.80	19.07	1286.81	1290.81	1303.36		1305.88
SMW-22R	POC	2/3/2004	Monitor	2	PVC	PVC	0.01	1.97	8.0	0.25	16.80	1281.66	1289.66	1296.49		1298.46
SMW-24		5/1/1990	Monitor	2	PVC	PVC	0.01	2.24	4.0	0.80	14.81	1280.96	1284.96	1293.53		1295.77
SMW-25		33007	Monitor	2	PVC	PVC	0.01	2.25	4.0	0.80	27.64	1276.98	1280.98	1302.37		1304.62
SMW-26		5/20/1990	Monitor	2	PVC	PVC	0.01	2.17	4.0	0.80	24.54	1279.70	1283.70	1302.07		1304.24
SMW-27		5/1/1991	Monitor	2	SS	SS	0.01	2.47	4.0	0.00	13.92	1289.58	1293.58	1301.03		1303.50
SMW-28		12/14/1991	Monitor	2	PVC	PVC	0.01	2.19	4.0	1.08	27.55	1277.40	1281.40	1302.76		1304.95
SMW-30	Detection / Primary	12/16/1991	Monitor	2	PVC	PVC	0.01	2.17	4.00	1.0	22.68	1279.70	1283.70	1300.21		1302.38
SMW-58		6/14/1990	Monitor	2	SS	SS	0.01	-0.31	4.80	1.75	14.15	1241.57	1246.37	1256.03		1255.72
SMW-59		6/16/1990	Monitor	2	PVC	PVC	0.01	-0.25	4.00	0.8	14.59	1279.17	1283.17	1294.01	+	1293.76 +
SMW-60		6/26/1990	Monitor	2	SS	SS	0.01	0.00	4.8	1.8	33.74	1255.08	1259.88	1288.82	+	1288.82 +
SMW-62	MoDNR	6/28/1990	Monitor	2	SS	SS	0.01	-0.10	7.00	1.85	17.96	1278.29	1285.29	1296.35	+	1296.25 +
SMW-64	Detection / Primary	6/30/1990	Monitor	2	SS	SS	0.01	1.32	4.80	3.99	21.89	1270.98	1275.78	1291.55	+	1292.87 +
SMW-71	Detection/ Primary	12/10/1991	Monitor	2	SS	SS	0.01	-0.16	5.00	0.33	7.41	1247.81	1252.81	1255.38		1255.22
SMW-72		4/26/1994	Monitor	2	SS	SS	0.01	-0.44	10.00	0.35	43.39	1213.94	1223.94	1257.77		1257.33
SMW-73	Detection/ Primary	2/20/1996	Monitor	2	SS	SS	0.01	-0.58	5.00	0.0	33.89	1206.38	1211.38	1240.85		1240.27
SMW-74	Detection/ Primary	2/21/1996	Monitor	2	SS	SS	0.01	-0.60	5.00	0.0	19.86	1248.51	1253.51	1268.97		1268.37
SMW-75		2/20/1996	Monitor	2	SS	SS	0.01	-0.26	5.00	0.0	24.81	1248.64	1253.64	1273.71		1273.45
SMW-76	RAO	9/28/2016	Monitor	2	PVC	PVC	0.01	2.80	10		25.00	1281.13	1291.13	1303.33		1306.13
SMW-77	RAO	10/5/2016	Monitor	2	PVC	PVC	0.01	-0.40	20.00		40.00	1254.08	1274.08	1294.48		1294.08
SMW-78	RAO	10/5/2016	Monitor	2	PVC	PVC	0.01	-0.36	20		42.00	1252.91	1272.91	1295.27		1294.91
SMW-79	RAO	10/6/2016	Monitor	2	PVC	PVC	0.01	-0.31	5.00		25.00	1269.70	1274.70	1295.01		1294.70
SMW-80	RAO	10/10/2016	Monitor	2	PVC	PVC	0.01	-0.52	20		27.00	1252.41	1272.41	1279.93		1279.41
SMW-81	RAO	10/13/2016	Monitor	2	PVC	PVC	0.01	-0.30	20.00		27.00	1247.50	1267.50	1274.80		1274.50
SMW-82	RAO	10/17/2016	Monitor	2	PVC	PVC	0.01	-0.55	15		21.00	1241.59	1256.59	1263.14		1262.59
SMW-83	RAO	10/18/2016	Monitor	2	PVC	PVC	0.01	-0.43	25.00		33.50	1254.31	1279.31	1288.24		1287.81
SMW-84	RAO	11/17/2016	Monitor	2	PVC	PVC	0.01	0.50	20		54.50	1207.42	1227.42	1261.42		1261.92
SMW-85	RAO	11/14/2016	Monitor	2	PVC	PVC	0.01	-0.35	20.00		57.00	1197.60	1217.60	1254.95		1254.60
SMW-86	RAO	12/20/2016	Monitor	2	PVC	PVC	0.01	0.50	15		30.00	1245.73	1260.73	1275.23		1275.73
SMW-87	RAO	12/27/2016	Monitor	2	PVC	PVC	0.01	-0.43	20.00		38.00	1249.57	1269.57	1288.00		1287.57
WLMW-02	Woodlawn_Spri ng	10/5/2005	Monitor	2	PVC	PVC	0.01	4.70	10.0	0.40	45.70	1207.10	1217.10	1248.1	+	1252.8 +
WLMW-03	Woodlawn_Spri ng	10/11/2005	Monitor	2	PVC	PVC	0.01	2.90	10.0	0.40	42.90	1209.90	1219.90	1249.9	+	1252.8 +
WLMW-04	Woodlawn_Spri ng	10/13/2005	Monitor	2	PVC	PVC	0.01	2.98	10.0	0.40	36.98	1214.20	1224.20	1248.2	+	1251.18 +
WLMW-11	Woodlawn_Spri ng	10/25/2005	Monitor	2	PVC	PVC	0.01	3.41	10.0	0.70	18.71	1195.90	1205.90	1211.2	+	1214.61 +

DRAFT

Well Name	Designation or Pumping Center	Install Date	Well Purpose	Casing Diam (in.)	Casing Type	Screen Type	Slot Size	Stickup* (ft.)	Screen Lengtl (ft.)	h Sump Length (ft.)	Measured Total Depth (ft.)	TD Elev	Top of Screen/Open Bore Elev	Pad Elevation (ft.)**	Top of Casin Elevation (ft.)**
							Secondary F	low Zone						<u> </u>	
BMW-1	POC	4/1/1986	Monitor	4 & 7	PVC	open bore	NA	2.37	14.5	0.00	142.08	1142.40	1156.90	1282.11	1284.48
BMW-2	POC, CorrAction	3/25/1986	Monitor	4 & 7	PVC	open bore	NA	2.18	10.0	0.00	130.55	1152.95	1162.95	1281.32	1283.50
BMW-4	POC	3/27/1986	Monitor	4&7	PVC	open bore	NA	2.36	20.0	1.00	153.17	1134.82	1154.82	1285.63	1287.99
BMW-5		4/4/1986	Recovery	4 & 7 SS-Surf	PVC	open bore	NA	0.16			160.00	1127.54	1127.54	1287.38	1287.54
BMW-6		4/2/1986	Monitor	4 & 7	PVC	PVC	NA	2.65	14.0	1.00	161.60	1139.93	1153.93	1298.88	1301.53
BMW-9	POC	12/9/1988	Monitor	4	PVC	PVC	NA	0.54	20.0	0.00	154.98	1136.64	1156.64	1291.08	1291.62
BMW-10R	Detection / Primary	10/11/2005	Monitor	2 & 8-5/8	SS	SS	0.01	2.66	9.6	0.00	176.16	1130.00	1139.60	1303.5	+ 1306.16
BMW-12	RAO							-0.19	44.0		80	1221.15	1265.15	1301.34	1301.15
BMW-13	RAO	9/29/2016	Monitor	6.625	Steel	open bore	NA	0.99	98.0		180	1110.24	1208.24	1289.25	1290.24
BMW-14	RAO	9/30/2016	Monitor	6.625	Steel	open bore	NA	1.53	98.0		180	1127.61	1225.61	1306.08	1307.61
							Tertiary Flo	ow Zone							
BMW-4A		12/12/1988	Monitor	2 & 4	PVC	PVC	NA	0.79	40.0	0.00	252.00	1034.24	1074.24	1285.45	1286.24
BMW-5A		4/6/1986	Monitor	2 & 4	PVC	PVC	NA	0.74	10.0	0.00	215.58	1071.78	1081.78	1286.62	1287.36
BMW-6A		4/3/1986	Monitor	4	PVC	PVC	NA	3.51	10.0	0.00	210.85	1090.50	1100.50	1297.84	1301.35
							ABANDONE	D WELLS							
PW-4		3/5/1986	Piezometer	2	PVC	PVC	0.01	2.24			11.88			1285.75	1287.99
PW-5		3/5/1986	Piezometer	2	PVC	PVC	0.01	2.26			NA			1285.50	1287.76
PW-6		3/3/1986	Piezometer	2	PVC	PVC	0.01	2.05			NA			1286.60	1288.65
PW-7		3/31/1986	Piezometer	2	PVC	PVC	0.01	2.72			NA			1286.00	1288.72
PW-8		3/28/1986	Piezometer	2	PVC	PVC	0.01	3.28			NA			1286.60	1289.88
PW-9		2/28/1986	Piezometer	2	PVC	PVC	0.01	2.35			NA			1288.20	1290.55
PW-2		2/20/1986	Piezometer	2	PVC	PVC	0.01	3.02			NA			1291.80	1294.82
PW-12		2/21/1986	Piezometer	2	PVC	PVC	0.01	2.47			NA			1293.00	1295.47
PW-13		2/24/1986	Piezometer	2	PVC	PVC	0.01	2.49			NA			1294.50	1296.99
PW-15		2/25/1986	Piezometer	2	PVC	PVC	0.01	2.39			16.02			1297.98	1300.37
PW-16		2/26/1986	Piezometer	2	PVC	PVC	0.01	1.91			NA			1296.90	1298.81
PW-17		2/26/1986	Piezometer	2	PVC	PVC	0.01	2.79			NA			1298.30	1301.09
PW-18		3/31/1987	Piezometer	2	PVC	PVC	0.01	2.62			NA			1300.40	1303.02
PW-19		3/31/1987	Piezometer	2	PVC	PVC	0.01	2.13			NA			1303.30	1305.43
PW-21		3/30/1987	Piezometer	2	PVC	PVC	0.01	2.17			NA			1297.90	1300.07
PW-22		7/7/1987	Piezometer	2	PVC	PVC	0.01	2.18			10.45			1285.79	1287.97
PW-23		7/7/1987	Piezometer	2	PVC	PVC	0.01	1.78			NA			1283.80	1285.58
PW-24		6/30/1987	Piezometer	2	PVC	PVC	0.01	2.90			26.23			1321.90	1324.80
PW-25		6/30/1987	Piezometer	2	PVC	PVC	0.01	3.11			NA			1323.60	1326.71
PW-26		7/1/1987	Piezometer	2	PVC	PVC	0.01	2.95			17.81			1324.38	1327.33
PW-27		6/30/1987	Piezometer	2	PVC	PVC	0.01	-0.30			9.39			1317.91	1317.61
PW-28		6/30/1987	Piezometer	2	PVC	PVC	0.01	2.37			13.10			1304.06	1306.43
PW-30		7/1/1987	Piezometer	2	PVC	PVC	0.01	2.92			NA			1297.80	1300.72
PW-31		6/30/1987	Piezometer	2	PVC	PVC	0.01	-0.32			19.85			1304.05	1303.73
PW-33		12/20/1988	Piezometer	2	PVC	PVC	0.01	2.96			20.20			1300.58	1303.54
PW-35		12/21/1988	Piezometer	2	PVC	PVC	0.01	3.05			17.30			1301.44	1304.49
PW-36		3/24/1995	Piezometer	2	PVC	PVC	0.01	-0.12			18.62			1302.67	1302.55
RW-10		10/8/1990	Recovery	6	CarbonSteel	GAL	0.03	0.25			17.67			1299.59	1299.84
RW-11		10/8/1990	Recovery	6	CarbonSteel	GAL	0.03	0.55			14.08			1299.21	1299.76
RW-12		10/8/1990	Recovery	6	CarbonSteel	GAL	0.03	0.25			12.83			1299.60	1299.85
SLMW-1		3/23/1981	Monitor	4	PVC	PVC		2.76			34.34			1321.75	1324.51

Well Name	Designation or Pumping Center	Well Purpose	Casing Diam (in.)	Casing Type	Screen Type	Slot Size	Stickup* (ft.)	Screen Length Sump Length Measured Total (ft.) (ft.) Depth (ft.)	TD Elev	Top of Screen/Open Bore Elev	Pad Elevation (ft.)**	Top of Casing Elevation (ft.)**
SLMW-2	4/22/1981	Monitor	x	PVC	PVC	0.01	2.35	NA		BOIE Elev	1324.70	1327.05
SLMW-3	2/4/1982	Monitor	x	PVC	PVC	0.01	2.53	NA			1322.30	1324.83
SLMW-4	4/23/1981	Monitor	x	PVC	PVC	0.01	2.11	NA			1321.30	1323.41
SLMW-5	12/28/1987	Monitor	2	SS	SS	0.01	2.27	27.00			1322.66	1324.93
SLMW-7	12/30/1987	Monitor	2	SS	SS	0.01	2.28	29.34			1324.55	1326.83
SMW-2	2/5/1982	Monitor	4	PVC	PVC		1.52	24.52			1284.06	1285.58
SMW-4	2/16/1982	Monitor	4.5	PVC(OD)	PVC	3/8" perf	1.02	24.00			1288.07	1289.09
SMW-5	2/25/1983	Monitor	4.5	PVC	PVC	3/8" perf	0.02	17.00			1295.50	1295.52
SMW-6	2/25/1983	Monitor	4.5	PVC	PVC	3/8" perf	-0.02	15.50			1296.70	1296.68
SMW-7	4/25/1985	Monitor	2	PVC	PVC	0.01	2.84	12.67			1285.54	1288.38
SMW-8	4/25/1985	Monitor	x	PVC	PVC	0.01	4.35	12.00			1286.80	1291.15
SMW-9	4/26/1985		2	PVC	PVC	0.01	3.39	14.00			1287.40	1290.79
SMW-10A	4/18/1985	Monitor	2	PVC	PVC	0.01	3.11	11.03			1280.49	1283.60
SMW-10B	4/18/1985	Monitor	2	PVC	PVC	0.01	3.73	10.48			1280.12	1283.85
SMW-10C	4/18/1985	Monitor	2	PVC	PVC	0.01	2.09	40.00			1281.40	1283.49
SMW-11A	4/17/1985	Monitor	2	PVC	PVC	0.01	0.28	12.16			1291.30	1291.58
SMW-11C	4/17/1985	Monitor	2	PVC	PVC	0.01	2.18	40.00			1291.07	1293.25
SMW-11CR	3/3/1986	Monitor	4	PVC/OH	PVC	open bore	1.31	43.29			1291.26	1292.57
SMW-12A	4/24/1985	Monitor	2	PVC	PVC	0.01	2.54	9.14			1290.53	1293.07
SMW-12B	4/18/1985	Monitor	2	PVC	PVC	0.01	1.75	11.53			1290.40	1292.15
SMW-22	4/24/1990	Monitor/Recovery	2	PVC	PVC	0.01	-0.26	16.69			1295.90	1295.64
SMW-23	4/30/1990	Monitor	2	PVC	PVC	0.01	-0.15	0.00			1302.08	1301.93
SMW-29	12/16/1991	Monitor	2	PVC	PVC	0.01	-0.30	19.57			1301.38	1301.08
SMW-50	5/5/1990	Monitor	2	PVC	PVC	0.01	-0.16	23.50			1297.27	1297.11
SMW-51	5/22/1990	Monitor	2	PVC	PVC	0.01	-0.27	28.30			1266.14	1265.87
SMW-52	6/3/1990	Monitor	2	PVC	PVC	0.01	-0.75	14.00			1247.47	1246.72
SMW-53	6/5/1990	Monitor	2	PVC	PVC	0.01	-0.14	12.50			1258.51	1258.37
SMW-54	6/12/1990	Monitor	2	PVC	PVC	0.01	-0.50	10.85			1269.91	1269.41
SMW-55	6/14/1990	Monitor	2	PVC	PVC	0.01	-0.27	14.45			1270.85	1270.58
SMW-56	6/13/1990	Monitor	2	PVC	PVC	0.01	-0.49	17.60			1277.12	1276.63
SMW-57	6/13/1990	Monitor	2	PVC	PVC	0.01	-0.46	16.80			1288.02	1287.56
SMW-61	6/27/1990	Monitor	2	SS	SS	0.01	-0.39	16.00			1289.59	1289.20
SMW-63	9/29/1990	Monitor	2	SS	SS	0.01	-0.44	23.26			1269.77	1269.33
SMW-65	9/27/1990	Monitor	2	SS	SS	0.01	-0.29	47.21			1257.58	1257.29
SMW-66	9/29/1990	Monitor	2	SS	SS	0.01	-37.82	49.67			1239.72	1201.90
SMW-67	10/23/1990	Monitor	2	SS	SS	0.01	-0.20	54.80			1240.68	1240.48
SMW-68	10/25/1990	Monitor	2	SS	SS	0.01	-0.40	50.00			1240.28	1239.88
SMW-69	10/24/1990	Monitor	2	SS	SS	0.01	-0.50	49.70			1237.05	1236.55
SMW-70	7/16/1991	Monitor	2	SS	SS	0.02	-0.10	22.50			1291.79	1291.69
WLMW-01	11/9/2005	Monitor	2	PVC	PVC	0.01	-0.33	54.83			1263.30	1262.97
WLMW-05	10/17/2005	Monitor	2	PVC	PVC	0.01	2.99	53.80			1248.10	1251.09
WLMW-06	10/19/2005	Monitor	2	PVC	PVC	0.01	-177.11	34.00			1427.00	1249.89
WLMW-07	10/13/2005	Monitor	2	PVC	PVC	0.01	2.92	52.00			1245.50	1248.42
WLMW-08	10/20/2005	Monitor	2	PVC	PVC	0.01	2.86	28.50			1246.60	1249.46
WLMW-08A	10/20/2005	Monitor	2	PVC	PVC	0.01	3.06	23.80			1241.55	1244.61
WLMW-09	10/18/2005	Monitor	2	PVC	PVC	0.01	2.72	52.00			1247.40	1250.12
WLMW-10	10/19/2005	Monitor	2	PVC	PVC	0.01	2.50	39.30			1241.70	1244.20
WLMW-12	10/24/2005	Monitor	2	PVC	PVC	0.01	3.08	29.00			1223.20	1226.28

DRAFT

TABLE 1.0 - SUMMARY OF WELL CONSTRUCTION DETAILS FORMER TRONOX FACILITY SPRINGFIELD, GREENE COUNTY, MISSOURI

Well Name	Designation or Pumping Center	Well Purpose	Casing Diam (in.)	Casing Type	Screen Type	Slot Size	Stickup* (ft.)	Screen Length Sump Length (ft.) (ft.)	Measured Total Depth (ft.)	TD Elev	Top of Screen/Open Bore Elev	Pad Elevation (ft.)**	Top of Casing Elevation (ft.)**
WLMW-13	10/24/2005	Monitor	2	PVC	PVC	0.01	3.53		24.00			1235.80	1239.33
WLMW-14	10/27/2005	Monitor	2	PVC	PVC	0.01	3.21		33.00			1227.10	1230.31
WLMW-15	10/28/2005	Monitor	2	PVC	PVC	0.01	3.19		27.00			1225.60	1228.79
WLMW-16	11/3/2005	Monitor	2	PVC	PVC	0.01	3.24		28.00			1236.50	1239.74
WLMW-17	11/7/2005	Monitor	2	PVC	PVC	0.01	3.10		29.80			1230.30	1233.40
BMW-3	3/26/1986	Monitor	4	PVC	open bore	NA	NA		NA			1281.60	NA
BMW-7	12/8/1988	Monitor	4	PVC	PVC	NA	0.92		165.69			1299.57	1300.49
BMW-8	12/13/1988	Monitor	4	PVC	PVC	NA	0.97		165.11			1301.62	1302.59
BMW-10	12/8/1988	Monitor	4	PVC	open bore	NA	0.02		172.52			1303.50	1303.52
BMW-11	7/15/1991	Monitor	2	PVC/SS	SS	0.01	0.20		162.20			1304.90	1305.10
BMW-50	12/14/1991	Monitor	2	PVC	PVC	0.01	-0.29		107.71			1255.97	1255.68
BMW-51	12/15/1991	Monitor	2	PVC	PVC	0.01	-0.19		158.81			1299.16	1298.97
4A			4	PVC	open bore	NA	NA		NA			NA	NA

* = Stickup is calculated from 2016 Wellhead Survey as (TOC Elevation - Pad Elevation)

** = Elevation in feet above mean sea level (AMSL) from 2016 Wellhead Survey (Anderson Engineering)

*** = SMW-60 was converted to flush-mount during the RAO work and was not included in the 2016 Wellhead Survey

* = Well was not included in 2016 Anderson Engineering Wellhead Survey

Data Source: 2008

TABLE 2.0 - WATER LEVELS AND NAPL THICKNESSES FORMER TRONOX FACILITY SPRINGFIELD, GREENE COUNTY, MISSOURI

Well Number	Measuring Point Elevation	Well Monitoring Date	Depth to Static Water Level (ft. bmp)	DNAPL Thickness (ft.)	Groundwater Elevation (ft.)	Depth to Well Terminus (ft.)
		UPP	ER FLOW ZONE (UF	Z) WELLS		
		1/19/2017	38.04	0.00	1219.86	39.39
		2/1/2017	38.23	NM	1219.67	NM
RW-21	1257.90	2/20/2017	38.30	NM	1219.60	NM
		4/24/2017	37.32	Trace	1220.58	43.71
		AVERAGE	37.97	NA	1219.71	
		1/19/2017	11.89	0.00	1243.83	14.17
		2/1/2017	12.05	NM	1243.67	NM
SMW-58	1255.72	2/20/2017	12.16	NM	1243.56	NM
		4/24/2017	11.00	NM	1244.72	NM
		AVERAGE	11.78	0.00	1243.69	
		1/19/2017	NM	NM	NM	NM
		2/1/2017	NM	NM	NM	NM
SMW-71	1254.77	2/20/2017	1.90	NM	1252.87	NM
		4/24/2017	1.01	NM	1253.76	7.43
		AVERAGE	1.90	NA	1252.87	
		1/19/2017	NM	NM	NM	NM
		2/1/2017	37.75	NM	1219.58	NM
SMW-72	1257.33	2/20/2017	37.80	NM	1219.53	NM
		4/24/2017	36.85	NM	1220.48	NM
		AVERAGE	37.47	NA	1219.56	
		1/19/2017	NM	NM	NM	NM
		2/1/2017	20.55	NM	1219.72	NM
SMW-73	1240.27	2/20/2017	21.12	NM	1219.15	NM
		4/24/2017	31.64	NM	1208.63	33.90
		AVERAGE	24.44	NA	1219.44	
		1/19/2017	4.91	0.00	1263.46	19.91
		2/1/2017	6.32	NM	1262.05	NM
SMW-74	1268.37	2/20/2017	8.90	NM	1259.47	NM
		4/24/2017	1.91	NM	1266.46	19.89
		AVERAGE	5.51	0.00	1261.66	
		1/19/2017	3.29	0.00	1270.16	24.78
		2/1/2017	6.80	0.00	1266.65	NM
SMW-75	1273.45	2/20/2017	9.60	NM	1263.85	NM
		4/24/2017	1.48	NM	1271.97	NM
		AVERAGE	5.29	0.00	1266.89	
		10/14/2016	10.23	0.00	1295.99	27.60
		1/19/2017	7.98	0.00	1298.24	27.65
0 0/ · · · · ·	1005.55	2/1/2017	10.18	0.00	1296.04	27.70
SMW-76	1306.22	2/20/2017	NM	NM	NM	NM
		4/24/2017	5.84	NM	NM	27.60
		AVERAGE	8.56	0.00	1296.76	

TABLE 2.0 - WATER LEVELS AND NAPL THICKNESSES FORMER TRONOX FACILITY SPRINGFIELD, GREENE COUNTY, MISSOURI

Well Number	Measuring Point Elevation	Well Monitoring Date	Depth to Static Water Level (ft. bmp)	DNAPL Thickness (ft.)	Groundwater Elevation (ft.)	Depth to Well Terminus (ft.)
		10/7/2016	23.79	0.00	1270.68	40.04
		1/19/2017	9.43	0.00	1285.04	39.60
SMW-77	1294.47	2/1/2017	18.90	0.00	1275.57	39.55
510100-77	1254.47	2/20/2017	NM	NM	NM	NM
		4/24/2017	8.87	NM	1285.60	39.54
		AVERAGE	15.25	0.00	1277.10	
		10/7/2016	26.45	NM	1268.80	NM
		1/19/2017	15.10	0.00	1280.15	40.90
SMW-78	1295.25	2/1/2017	30.58	0.00	1264.67	40.90
510100-76	1255.25	2/20/2017	NM	NM	NM	NM
		4/24/2017	9.36	NM	1285.89	40.91
		AVERAGE	20.37	0.00	1271.21	
		10/20/2016	DRY	DRY	DRY	24.86
		1/19/2017	DRY	DRY	DRY	24.86
SMW-79	1295.04	2/1/2017	DRY	DRY	DRY	NM
310100-73	1295.04	2/20/2017	NM	NM	NM	NM
		4/24/2017	DRY	DRY	DRY	24.79
		AVERAGE	NA	NA	NA	
		12/13/2016	8.73	0.00	1271.15	25.33
		1/19/2017	4.56	0.00	1275.32	28.30
CN 114/ 80	1270.00	2/1/2017	7.62	0.00	1272.26	28.30
SMW-80	1279.88	2/20/2017	7.16	NM	1272.72	NM
		4/24/2017	4.16	NM	1275.72	28.25
		AVERAGE	6.45	0.00	1273.43	
		10/14/2016	11.38	0.00	1263.42	27.30
		1/19/2017	8.66	0.00	1266.14	27.37
CN414/ 01	1274.90	2/1/2017	10.05	0.00	1264.75	27.35
SMW-81	1274.80	2/20/2017	12.97	NM	1261.83	NM
		4/24/2017	5.12	NM	1269.68	27.29
		AVERAGE	9.64	0.00	1264.04	
		10/19/2016	2.70	0.00	1260.45	17.20
		1/19/2017	2.51	0.00	1260.64	18.49
SMW-82	1263.15	2/1/2017	2.73	0.00	1260.42	17.50
JIVI VV-02	1203.13	2/20/2017	3.51	NM	1259.64	NM
		4/24/2017	1.89	NM	1261.26	17.45
		AVERAGE	2.67	0.00	1260.29	
		11/10/2016	27.60	0.00	1260.63	33.10
		1/19/2017	16.94	0.00	1271.29	33.07
51/1/1/ 00	1200 22	2/1/2017	19.34	0.00	1268.89	33.12
SMW-83	1288.23	2/20/2017	NM	NM	NM	NM
		4/24/2017	5.09	NM	1283.14	33.05
		AVERAGE	17.24	0.00	1266.94	
		11/10/2016	41.15	Trace	1220.27	54.23
		1/19/2017	40.93	Trace	1220.49	54.25
SMM/ 94	1264.42	2/1/2017	41.30	0.00	1220.12	54.60
SMW-84	1261.42	2/20/2017	41.36	NM	1220.06	NM
		4/24/2017	40.28	NM	1221.14	54.21
		AVERAGE	41.00	0.00	1220.24	

TABLE 2.0 - WATER LEVELS AND NAPL THICKNESSES FORMER TRONOX FACILITY SPRINGFIELD, GREENE COUNTY, MISSOURI

Well Number	Measuring Point Elevation	Well Monitoring Date	Depth to Static Water Level (ft. bmp)	DNAPL Thickness (ft.)	Groundwater Elevation (ft.)	Depth to Well Terminus (ft.)
		11/16/2016	35.05	0.00	1219.90	55.30
		1/19/2017	34.88	0.00	1220.07	56.70
	1254.07	2/1/2017	34.94	0.00	1220.01	56.42
SMW-85	1254.97	2/20/2017	34.97	NM	1219.98	NM
		4/24/2017	34.02	NM	1220.93	56.38
		AVERAGE	34.77	0.00	1219.99	
		12/28/2016	16.47	0.00	1258.72	28.75
		1/19/2017	10.99	Trace	1264.20	28.74
SMW-86	1275 10	2/1/2017	11.94	0.00	1263.25	28.72
210100-80	1275.19	2/20/2017	14.85	NM	1260.34	NM
		4/24/2017	5.63	NM	1269.56	28.54
		AVERAGE	11.98	0.00	1261.63	
		12/28/2016	29.61	Trace	1268.36	38.25
		1/19/2017	23.35	Trace	1274.62	37.40
CN 114/ 07	1207.07	2/1/2017	24.88	Trace	1273.09	38.20
SMW-87	1297.97	2/20/2017	27.96	NM	1270.01	NM
		4/24/2017	16.63	NM	1281.34	37.53
		AVERAGE	24.49	NA	1271.52	
		4/18/2016	7.55	0.0	1285.36	NM
SMW-12C	1292.91	9/16/2016	6.78	0.0	1286.13	NM
SIVI W-12C	1292.91	4/24/2017	10.51	0.0	1282.40	NM
		AVERAGE	8.28	0.00	1284.63	
		9/29/2016	79.40	0.10	1223.63	80.80
		10/5/2016	76.36	0.45	1226.67	80.80
		10/21/2016	53.12	1.10	1249.91	80.80
BMW-12	1303.03	1/27/2017	6.05	1.70	1296.98	80.80
DIVIV-12	1303.03	2/28/2017	NM	2.30	NM	NM
		3/31/2017	3.15	1.90	1299.88	NM
		4/24/2017	2.80	2.50	1300.23	80.80
		AVERAGE	36.81	1.44	1259.41	
		SECON	DARY FLOW ZONE (SFZ) WELLS		
		10/3/2016	54.58	NM	1237.52	NM
		1/19/2017	51.70	NM	1240.40	NM
BMW-13	1292.10	1/31/2017	50.24	NM	1241.86	NM
DIVIV-15	1252.10	2/20/2017	NM	NM	NM	NM
		4/24/2017	41.60	NM	1250.50	181.20
		AVERAGE	49.53	NA	1239.93	
		10/5/2016	67.45	NM	1241.50	NM
		1/19/2017	74.29	NM	1234.66	NM
	1209.05	1/31/2017	65.72	NM	1243.23	NM
BMW-14	1308.95	2/20/2017	NM	NM	NM	NM
		4/24/2017	56.66	NM	1252.29	179.70
		AVERAGE	66.03	NA	1239.80	

NOTES:

Wells listed are those related to 2016-2017 RAO technical evaluations

NM = not measured

NA = not applicable

ft. bmp = feet below preliminary measuring point

Static water level measurements are recorded as feet below the preliminary measuring point.

Trace = << 0.01 ft

Analista		GWPS	Initial	1Q17	2Q17	Initial	Dec-16	1Q17	2Q17	Initial	1Q17	2Q17	Initial	1Q17	2Q17
Analyte		GWPS		SMW-76	i		SI	VW-80			SMW-81			SMW-82	2
			Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Acenaphthene	ug/l	1200	150	41	29	370	740	310	200	320	18	26	470	260	300
Acenaphthylene	ug/l	0.1	6	2	0.8	18	34	14	10	3	0.2 J	J 0.4 J	1.9	1	2
Anthracene	ug/l	9600	16	0.8	0.6	14	140	9	9	61	2	1	22	9	10
Benzo(a)anthracene	ug/l	0.1	36	2	0.8	0.5	240	0.5	0.9	68	0.8	0.3 J	10	0.5	2
Benzo(a)pyrene	ug/l	0.2	17	0.7	<0.1	<0.1	98	0.1	J <u>0.3</u> J	23	0.2 J	J <0.1	2.6	0.2	J 0.30 J
Benzo(b)fluoranthene	ug/l	0.1	25	0.9	0.2 J	0.1 J	J 140	0.2	0.5 J	33	0.3 J	J 0.2 J	5	0.3	J 0.80
Benzo(k)fluoranthene	ug/l	0.1	11	<mark>0.4</mark> .	J <0.1	<0.1	57	<0.1	0.2 J	13	0.2 J	J <0.1	2.1	0.2	J <mark>0.40</mark> J
2-Chlorophenol	ug/l	0.5	<0.5	<0.6	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	ug/l	0.1	26	2	0.4 J	0.4	J 170	0.4 .	J 0.7	47	0.7	0.4 J	7	0.5	J <u>0.90</u> J
Dibenz(a,h)anthracene	ug/l	0.1	2	<0.1	<0.1	<0.1	9	<0.1	<0.1	2	<0.1	<0.1	0.32	J <0.1	J <0.1
Dibenzofuran	ug/l	7.9	100	5	16	270	630	220	140	220	5	12	290	160	180
2,4-Dimethylphenol	ug/l	540	<0.5	<0.6	<0.5	2	3	<0.5	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dinitrophenol	ug/l	70	<10	<12	<11	<10	<10	<10	<11	<10	<10	<11	<10	<11	<11
Fluoranthene	ug/l	300	170	48	20	23	1,200	21	17	400	11	8	83	16	21
Fluorene	ug/l	1300	100	4	15	230	750	200	130	350	19	21	300	160	170
Indeno(1,2,3-cd)pyrene	ug/l	0.1	6	0.1 .	J <0.1	<0.1	28	<0.1	<0.1	6	<0.1	<0.1	1.3	<0.1	0.10 J
2-Methylnaphthalene	ug/l	36	11	<0.1	<0.1	630	740	520	240	43	<0.1	<0.1	470	300	320
Naphthalene	ug/l	20	67	<0.1	4	11,000	8,200	9700	4,300	4	<0.1	<0.1	3900	2,700	3300
Phenanthrene	ug/l	0.1	110	1	0.3 J	210	1,700	190	130	950	25	7	390	160	160
Phenol	ug/l	300	<0.5	<0.6	<0.5	0.5	J <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Picoline	ug/l	NA	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2.1	<2	<2.
Pyrene	ug/l	960	100	21	6	11	650	10	9	240	6	3	47	8	13
Benzene	ug/l	5	<0.2	<0.2	<0.2	10	9.3	8	3.7	<0.2	<0.2	<0.2	<1.0	0.2	J 0.30 J
Ethylbenzene	ug/l	700	1.7	<0.2	0.3 J	94	92	78	41	0.7	J <0.2	0.3 J	13	12	14
Toluene	ug/l	1000	<0.2	<0.2	<0.2	47	45	39	18	<0.2	<0.2	0.3 J	2.6	J 2.3	2
Total Xylenes	ug/l	10000	3.8	<0.2	0.7 J	310	300	270	150	2.7	0.3	J 2	38	39	38

Notes:

J = estimated value ≥ the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

GWPS = Groundwater Protection Standards

Yellow = 1x-10x GWPS

Orange = 10x-100x GWPS

Red = >100x GWPS

< = Less than NA = Not Analyzed

Analyte		GWPS	Initial	1Q17	2Q17	Initial	1Q17	2Q17	Initial	1Q17	2Q17	Initial	1Q17	2Q17
Analyte		GWF5		SMW-86			SMW-87	7		SMW-84			SMW-85	
			Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Acenaphthene	ug/l	1200	88	1	0.30 J	550	81	53	410	340	330	37	<0.1	<0.1
Acenaphthylene	ug/l	0.1	3	<0.1	<0.1	7	0.7	1	3	2	5	1 .	l <0.1	<0.1
Anthracene	ug/l	9600	7	<0.1	<0.1	87	8	8	17	27	33	5.	l <0.1	<0.1
Benzo(a)anthracene	ug/l	0.1	2	<0.1	<0.1	97	1	8	2	20	24	6	0.1 J	0.1 J
Benzo(a)pyrene	ug/l	0.2	0.5	J <0.1	<0.1	36	0.2	J <mark>3</mark>	0.5 J	9	10	6	0.2 J	0.3 J
Benzo(b)fluoranthene	ug/l	0.1	0.7	<0.1	<0.1	50	0.4	J 4	0.7	12	13	9	0.4 J	0.3 J
Benzo(k)fluoranthene	ug/l	0.1	0.4	J <0.1	<0.1	20	0.1	J 2	<mark>0.3</mark> J	5	6	4.	J <u>0.2</u> J	0.1 J
2-Chlorophenol	ug/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	ug/l	0.1	1	<0.1	<0.1	64	0.7	5	1	16	19	5	<0.1	0.1 J
Dibenz(a,h)anthracene	ug/l	0.1	<0.1	<0.1	<0.1	4	<0.1	0.5 J	<0.1	0.8	1	<1	<0.1	<0.1
Dibenzofuran	ug/l	7.9	45	<0.5	<0.5	440	58	38	290	250	220	24	<0.5	<0.5
2,4-Dimethylphenol	ug/l	540	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dinitrophenol	ug/l	70	<11	<11	<11	<10	<10	<10	<10	<11	<10	<100	<10	<10
Fluoranthene	ug/l	300	35	0.3 J	0.3 J	470	25	47	28	98	120	42	0.2 J	0.3 J
Fluorene	ug/l	1300	62	<0.1	<0.1	470	68	45	230	220	220	32	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	ug/l	0.1	0.2	J <0.1	<0.1	12	<0.1	1	0.1 J	3	4	3.	J <mark>0.1</mark> J	0.1 J
2-Methylnaphthalene	ug/l	36	0.5	J <0.1	<0.1	460	30	14	540	350	230	<1	<0.1	<0.1
Naphthalene	ug/l	20	2	<0.1	0.3 J	5,400	98	150	5000	3,300	1700	<1	<0.1	<0.1
Phenanthrene	ug/l	0.1	13	<0.1	<0.1	1,000	100	81	240	350	350	32	<0.1	<0.1
Phenol	ug/l	300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	<0.5
2-Picoline	ug/l	NA	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20	<2	<2
Pyrene	ug/l	960	18	<0.1	0.1 J	280	13	29	14	60	75	26	0.1 J	<0.1
Benzene	ug/l	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.5 J	0.5 J	0.2 J	<0.2	<0.2	<0.2
Ethylbenzene	ug/l	700	0.3	J <0.2	<0.2	14	0.3	J <0.2	20	16	8	<0.2	<0.2	<0.2
Toluene	ug/l	1000	<0.2	<0.2	<0.2	1.3	0.4	J <0.2	5	4.6	2	<0.2	<0.2	<0.2
Total Xylenes	ug/l	10000	0.8	J <0.2	<0.2	49	2.9	2	82	61	30	<0.2	<0.2	<0.2

Notes:

 $\label{eq:J} J = estimated value \geq the Method Detection \\ Limit (MDL or DL) and < the Limit of \\ Quantitation (LOQ or RL)$

GWPS = Groundwater Protection Standards

Yellow = 1x-10x GWPS

Orange = 10x-100x GWPS

Red = >100x GWPS

< = Less than

NA = Not Analyzed

		014/06	Initial	1Q17	2Q17	Initial	1Q17	2Q17	Initial	1Q17	2Q17	2H2012	2013	2H2014	2H2015	2H2016
Analyte		GWPS		SMW-77			SMW-78			SMW-83				BMW	/-2	
		Ī	Results		Results	Results	Results									
Acenaphthene	ug/l	1200	0.16 J	3	1	1.0	<0.1	<0.1	<0.1	<0.1	<0.1	4		3	8	7
Acenaphthylene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3 J		0.3 J	0.2 J	0.1 J
Anthracene	ug/l	9600	<0.1	<0.1	<0.1	0.70	<0.1	<0.1	<0.1	<0.1	<0.1	0.9		0.2 J	0.3 J	0.7
Benzo(a)anthracene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2 J		0.1 J	0.1 J	0.3 J
Benzo(a)pyrene	ug/l	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 J		0.3 J	<0.1	<0.1
Benzo(b)fluoranthene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 J		0.3 J	< 0.1	0.2 J
Benzo(k)fluoranthene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		0.2 J	< 0.1	<0.1
2-Chlorophenol	ug/l	0.5	<0.5	<0.6	<0.5	<0.5	<0.6	<0.5	<0.5	<0.6	<0.5	<0.5		<0.5	<0.5	<0.5
Chrysene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2 J	13	0.2 J	0.2 J	0.2 J
Dibenz(a,h)anthracene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	20	<0.1	< 0.1	<0.1
Dibenzofuran	ug/l	7.9	<0.5	<0.6	<0.5	0.9 J	<0.6	<0.5	<0.5	<0.6	<0.5	3	in	1	4	5
2,4-Dimethylphenol	ug/l	540	<0.5	<0.6	<0.5	<0.5	<0.6	<0.5	<0.5	<0.6	<0.5	<0.5	pled	<0.5	<0.5	<0.5
2,4-Dinitrophenol	ug/l	70	<11	<13	<11	<10	<11	<10	<10	<12	<10.0	<10	am	<10	<10	<10
Fluoranthene	ug/l	300	0.69	1	<0.1	0.15 J	<0.1	<0.1	0.2 J	<0.1	<0.1	3	not s	0.9	4	4
Fluorene	ug/l	1300	0.15 J	0.3 J	<0.1	2.6	<0.1	<0.1	<0.1	<0.1	<0.1	3	ŭ	2	7	6
Indeno(1,2,3-cd)pyrene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		0.2 J	<0.1	<0.1
2-Methylnaphthalene	ug/l	36	<0.1	<0.1	<0.1	0.28 J	<0.1	<0.1	<0.1	<0.1	<0.1	0.8		<0.1	0.3 J	0.4 J
Naphthalene	ug/l	20	0.14 J	0.3 J	<0.1	0.54	<0.1	<0.1	<0.1	<0.1	<0.1	4		0.9	4	<0.1
Phenanthrene	ug/l	0.1	<0.1	<0.1	<0.1	1.6	<0.1	<0.1	0.2 J	<0.1	<0.1	7		0.4 J	6	5
Phenol	ug/l	300	<0.5	<0.6	<0.5	<0.5	<0.6	<0.5	<0.5	<0.6	<0.5	<0.2		<0.2	<0.2	<0.5
2-Picoline	ug/l	NA	<2	<3	<2.0	<2	<2	<2	<2	<2	<2.0	<2		NA	NA	<2
Pyrene	ug/l	960	0.48 J	0.7	<0.1	0.29 J	<0.1	<0.1	0.3 J	<0.1	<0.1	1		0.6	2	3
Benzene	ug/l	5	0.3 J	<0.2	<0.2	0.6 J	<0.2	<0.2	<0.2	<0.2	<0.2	1.7		0.5 J	0.4 J	0.5 J
Ethylbenzene	ug/l	700	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	6.2		3.1	2.2	5.1
Toluene	ug/l	1000	0.4 J	<0.2	<0.2	1 J	<0.2	<0.2	<0.2	<0.2	<0.2	0.5 J		<0.2	<0.2	0.2 J
Total Xylenes	ug/l	10000	<0.2	<0.2	<0.2	0.8 J	<0.2	<0.2	<0.2	<0.2	<0.2	8.3		4.4	3.3	6.1

Notes:

 $\label{eq:J} J = estimated value \geq the Method Detection \\ Limit (MDL or DL) and < the Limit of \\ Quantitation (LOQ or RL)$

GWPS = Groundwater Protection Standards

Yellow = 1x-10x GWPS

Orange = 10x-100x GWPS

Red = >100x GWPS

< = Less than NA = Not Analyzed DRAFT

Analyte		GWPS	2H2013	2H2014	2H2015	2H2016	Initial	Initial	Initial	Initial	1Q17	2Q17	Initial	1Q17	2Q17
Analyte		GWIS	-	BMW	-10R				BM	IW-13				BMW-14	
			Results	Results	Results	Results	80-ft	90-ft	150-ft	175-ft	90 ft	-	107-ft	107-ft	-
Acenaphthene	ug/l	1200	<0.1	57	<0.1	<0.1	0.4 .	J 93	58	48	63	42	<0.1	<0.1	<0.1
Acenaphthylene	ug/l	0.1	<0.1	0.8	<0.1	<0.1	<0.1	4	3	2	2	2	<0.1	<0.1	<0.1
Anthracene	ug/l	9600	<0.1	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	4	3	<0.1	<0.1	<0.1
Benzo(a)anthracene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	ug/l	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Chlorophenol	ug/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzofuran	ug/l	7.9	<0.5	30	<0.5	<0.5	<0.5	91	57	47	<0.5	37	<0.5	<0.5	<0.5
2,4-Dimethylphenol	ug/l	540	<0.5	13	<0.5	<0.5	1	6	8	6	7	12	<0.5	<0.5	<0.5
2,4-Dinitrophenol	ug/l	70	<10	<10	<10	<10	<10	<10	<10	<10	12 .	J <11	<11	<10	<10
Fluoranthene	ug/l	300	<0.1	0.6	<0.1	<0.1	0.1 .	J 4	3	2	1	0.5 J	<0.1	<0.1	<0.1
Fluorene	ug/l	1300	<0.1	28	<0.1	<0.1	0.7	41	26	22	23	14	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	ug/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Methylnaphthalene	ug/l	36	<0.1	47	<0.1	<0.1	1	330	200	160	220	150	<0.1	<0.1	<0.1
Naphthalene	ug/l	20	0.3 J	920	<0.1	<0.1	58	6400	4000	3400	4,200	3100	<0.1	<0.1	0.3
Phenanthrene	ug/l	0.1	0.2 J	14	<0.1	<0.1	0.6	54	36	27	31	20	<0.1	<0.1	<0.1
Phenol	ug/l	300	<0.5	<0.5	<0.5	<0.5	3	<0.5	<0.5	<0.5	3	3	<0.5	<0.5	<0.5
2-Picoline	ug/l	NA	NA	NA	NA	<2	<2	5.	I 5 J	5 J	<2	<2	<2	<2	<2
Pyrene	ug/l	960	<0.1	0.4 J	<0.1	<0.1	0.1 .	J 2	2	1	0.5 .	J 0.30 J	<0.1	<0.1	<0.1
Benzene	ug/l	5	0.3 J	<0.2	<0.2	<0.2	1.9	180	160	150	160	160	0.2 J	0.4 J	0.4
Ethylbenzene	ug/l	700	<0.2	0.2 J	<0.2	<0.2	1.0	73	51	42	74	61	<0.2	<0.2	<0.2
Toluene	ug/l	1000	<0.2	<0.2	<0.2	0.3 J	2.9	190	150	130	180	160	0.4 J	0.7 J	0.6
Total Xylenes	ug/l	10000	<0.6	<0.2	<0.2	<0.2	3.3	290	200	170	280	240	<0.2	0.3 J	0.3

Notes:

 $J = estimated value \geq the Method Detection \\ Limit (MDL or DL) and < the Limit of \\ Quantitation (LOQ or RL)$

GWPS = Groundwater Protection Standards

Yellow = 1x-10x GWPS

Orange = 10x-100x GWPS

Red = >100x GWPS

< = Less than

NA = Not Analyzed

TABLE 4.0 - GEOLOGY, WATER LEVELS, IMPACT, CHEMICAL TRENDS NEW RAO MONITORING WELLS FORMER TRONOX FACILITY SPRINGFIELD, GREENE COUNTY, MISSOURI

									А	nalytes Exc	eeding GWPS		Conce	entra	tion Tre	end	
Well	Total Boring Depth	Depth to Bedrock (ft)	Thickness Weathered Bedrock (ft)	Fractures & Voids (depth range ft)	Water Production	Water Level Range (ft)	DNAPL?	Creosote Odor?	Initial in 2016	2nd Qtr. 2017	Highest Initial Concentration (ug/L)		itude		es grea /PS	ater tha	an
	(ft)	(14)	Deurock (II)						2010	2017	concentration (ug/ L)	l	nitial		2 Q	tr. 201	7
												100x	10x	1x	100x	10x	1x
UFZ - OFF-	SITE NOF	RTHEAST											-				
SMW-76	25	11	<1	Void 18 - 20	Yes (void)	8 - 10.2	No	Yes	11	6	Phenanthrene 110	5	4	2	0	0	6
SMW-80	30	12	12	None noted	Yes	4.6 - 8.7	Yes, during drilling	Yes, strong	9	10	Naphthalene 11,000	3	2	4	3	1	6
SMW-81	27	10	12	Voids 14 - 19 , 21 - 22	Yes	8.7 - 13.0	No	Minor odors	12	5	Phenanthrene 950	6	4	2	0	1	4
SMW-82	30	6	10	Possible 6-16	Yes	2.5 - 3.5	Trace, sheen	Yes	12	10	Naphthalene 3,900	3	8	1	2	3	5
SMW-86	40	15	<1	Voids 16-20	Yes, slow	11.0 - 14.8	Trace, sheen early	Yes, during drilling	9	0	Phenanthrene 13	1	3	5	0	0	0
SMW-87	40	25	from 25 - 40	None noted	Yes, slow	23.3 - 29.6	Trace, sheen	Yes, during purging	13	11	Naphthalene 5,400	8	4	1	1	7	3
SMW-84	60	12	<1	Multiple 45 - 55	Yes	40.9 - 41.4	Trace, variable	Yes, during purging	11	12	Naphthalene 5,000	2	5	4	4	7	1
SMW-85	57	10	<1	None noted	Yes, at 38 ft	34.9 - 35.0	No	Slight odor during purge	9	5	Phenanthrene 32	1	8	0	0	0	5
UFZ - OFF-	SITE EAS	т															
SMW-77	40	10	5	None noted	Yes	9.4 - 18.9	No	No	0	0	Fluoranthene 0.69	0	0	0	0	0	0
SMW-78	42	15	5	None noted	Yes	15.1 - 30.6	No	No. Possible diesel odor	1	0	Phenanthrene 1.6	0	1	0	0	0	0
UFZ - OFF-	SITE SOU	THWEST															
SMW-79	26	17	<1	None noted	No - Dry	Dry well	No	No	Not san	npled - well	has remained dry						
SMW-83	35	15	20 -29	None noted	No, took days	16.9 - 19.3	No	No	1	0	Phenanthrene 0.2	0	0	1	0	0	0
SFZ ON-SI	TE	-															
BMW-12	80	18	2	None noted	Yes above 35. Slow below	3.1 - 6	From 37 - 75, 1.1 - 2.3 ft accumulates	Yes, strong	Not sam	npled due to	constant presence of DI	NAPL					
BMW-13	180	12	5, also 143-158	None noted to 80 Secondary porosity 143-158	Minor above 80	50.2 - 54.6	No	Yes, faint at 155 ft	6	6	Naphthalene 6,400	2	3	1	2	2	2
BMW-14	180	19	<1	None noted	Minor at 43	65.7 - 74.3	No	No	0	0	Toluene 0.4	0	0	0	0	0	0

Notes:

1. Ft = Feet DNAPL=Dense Non-Aqueous Phase Liquid GWPS= Groundwater Protection Standard

2. Northeast UFZ wells listed in order progressively outward from Facility to northeast

3. Concentration trends with respect to orders of magnitude greater than GWPS

4. 1x = 1 to <10x GWPS, 10x = 10x to <100x GWPS, and 100x= > 100x GWPS

Concentration Trends:

Issue Statements	Objective	Investigation Approach	Status/Recommendations	Deci
A. UPDATE MONITORING WEL	L ELEVATION DATA TO ENSURE ACC	URATE HYDROGEOLOGIC INFORMATION		
Many original monitoring well elevations are more than 25 years old, and require verification to confirm casings have not shifted over time	Have accurate monitoring well top- of-casing elevations to generate accurate potentiometric elevations and maps for SRFI evaluations	 Resurvey monitoring well monitoring points and land surface elevations using state-registered company Revise tables with new elevations, note differences, and generate revised potentiometric maps as needed 	 Activity completed Table elevations revised; no further surveying of old wells needed 	1. M trigg
Potentiometric evaluation may have combined differing UFZ hydrogeologic zones data for off-site north area; prudent to verify for all zones and wells	Accurately categorize monitoring wells for appropriate monitoring intervals of hydrogeologic zones	 Review monitoring well geologic log data for saturation levels and likely water migration pathway horizons Compare well screen depths with saturation and migration depth intervals Identify wells with inappropriate screened intervals Categorize wells for grouping into similar hydrogeologic zones 	 Reviews completed Comparisons completed Well screen evaluation completed Hydrogeologic characterization completed, additional evaluation needed for new wells only 	1. W 2. M karst 3. "S horiz horiz
B. UPDATE CHARACTERIZATIO	N OF UPPER FLOW ZONE DNAPL - G	ROUNDWATER FLOW AND MIGRATION PATHWAYS		
 Fracture networks and karst features appear present but not fully defined by work to-date On-site DNAPL zones and high concentration dissolved phase plume connections are not characterized Off-site to north: Clifton Drainage is karst trough with possible intersecting fracture zones near Kearney St; role as migration pathway not defined Off-site north: sinkhole, DNAPL occurrence, downstream springs are pathway indicators needing evaluation Off-site north: isolated DNAPL & high concentration plume area (RW-21, SMW- 72) movement from source area is unknown Off-site BNSF area south: Plume migration movement needs evaluation 	 Primary objective is to characterize groundwater flow patterns and migration pathways. Identify locations, depths, and orientations of plume migration hydrogeologic features explaining plume distribution Determine if utility corridors have acted as impacted groundwater or creosote migration pathways 	 Review stratigraphic migration pathway features identified from Section A, other documents, and map their plan view and vertical distribution on- and off-site Map and evaluate distribution and vertical occurrence of DNAPL from logged data Perform fracture trace/lineament analysis using historical air photos and topographic maps; evaluate well horizon and drainage elevations at RW-21 Map locations of documented and visually identified karst features in the area Evaluate contour patterns of potentiometric maps for varying recharge conditions, and evaluate head differences and variations within well groupings as indicators of fracture control Screen off-site stormwater manholes, water line vaults, and other under-ground utility accesses in City ROWs in off- site Clifton drainage area for indicators of impact (visual, photoionization device readings, odor) Combine all inputs above to estimate location and direction of migration-controlling features. Project features into areas needing additional delineation Perform horizontal geophysical resistivity surveys in north Clifton Drainage area to localize identified fracture zones & orientations for well placement. 	 Stratigraphic migration pathway features reviewed Distribution and vertical occurrence of DNAPL mapped from available data Fracture trace/lineament analysis, with RW-21 drainage elevation completed Karst feature locations mapped Potentiometric contour patterns and well head differences/variations evaluated Screening completed of off-site stormwater and available utility manholes in off-site Clifton drainage area Locations and direction of migration- controlling features for delineation completed; additional delineation should be updated with data from new wells. Geophysical resistivity surveys completed; no additional geophysical surveys are recommended. 	 Re eleva orien conce hydro Lin strea simila on ai Kn regio orien Kn regio orien If deve chara priva

REVISED - 8/30/2018

cision Factors or Criteria

Measuring point elevation differences above 0.1 ft gger revision of potentiometric maps

Well logs must have geologic description to evaluate Migration/monitoring indicators are geologic fractures, rst, DNAPL presence, saturation, water levels

"Similar hydrogeologic zones" are those with migration rizons contiguous and separated by more impermeable rizons greater than 10 ft thick

Recharging DNAPL well locations, similar water evations with similar variations between wells, linear ientation of high volume DNAPL locations and high incentration plume locations are indicators of rdrogeologic controls

Line-up of kinks/undulations in potentiometric contours ay indicate hydrogeologic influence

Linear topographic features crossing drainage basins, eam jogs, sinkhole or other karst feature lineups, and nilar features with discoloration and vegetation patterns air photos are indicators of lineaments/fracture zones

Known northeast-southwest and northwest-southeast gional joint patterns are guides for lineament/fracture lentation evaluation

If utility corridor screening indicates potential impact, evelop additional investigation approaches to further aracterize potential, including screening access vaults on ivate property

Issue Statements	Objective	Investigation Approach	Status/Recommendations	Decis
C. UPDATE DELINEATION OF UPP	ER FLOW ZONE DNAPL AND DISSOLVED	PHASE PLUME		
DNAPL distribution, mobility and migration are no longer fully defined	Determine DNAPL horizontal and vertical areas of concentration, identify migration pathways, and migration potential to identify potential source control corrective actions	 Evaluate DNAPL occurrence from log reviews in Section B and recoverability extent to identify DNAPL "hot spots". Update evaluation following TarGOST investigation results Match hydrogeologic migration pathways identified from evaluation above with identified DNAPL horizontal and vertical zones of concentration to evaluate potential framework for migration Review history of DNAPL occurrence and recoverability in wells over time for pattern of increased recoverability moving outward from source areas 	 Activity completed; DNAPL evaluation continues for any new wells Migration framework evaluation completed; update with data from any new wells Initial evaluation of DNAPL recoverability done, and continues as recovery wells are rehabilitated 	 If li inforr monii Uso TarGO If c recov
 UFZ DNAPL and plume not fully delineated to the north and north east of the Facility. Several PAHs at NE corner of Facility consistently exceed GWPS No longer delineated by POC wells Apparent creosote in residential sewer trench Feb 2009 	Delineate the nature and extent of the dissolved phase plume to the north-northeast of the Facility.	 Install up to 4 UFZ monitoring wells to 25 ft within 1,000 ft of site border in street or city right-of-ways (ROWs) field log for impact horizons Check wells for DNAPL, obtain groundwater samples, and analyze for VOCs & SVOCs If indicated by decision criteria, install step-out wells in outward and downgradient locations sited on fracture/karst migration orientations 	 Installed 4 UFZ monitoring wells Checking wells for DNAPL and sampling groundwater is ongoing Two additional step-out wells installed outward and downgradient locations sited on fracture/karst migration orientations. Recommend installing 3 deeper UFZ monitoring well: northeast Facility, and near Kearney Street at fracture intersections to target 1220 elevation depth to test deep migration pathway 	1. Foo featu 2. Plu conce 3. If E 4. Ne grour migra borin produ const
 Isolated UFZ impact in north Clifton Drainage near Kearney Street not characterized or delineated DNAPL observed in RW-21 & WL MW-3 High concentration COCs in SMW-72 Connection to Facility unknown 	 Define the downgradient horizontal extent of this zone and vertical impact pattern Characterize horizontal and vertical connectivity within Clifton Drainage migration pathway 	 Utilize migration pathways evaluation from Section B to install 3 UFZ wells to 40-50 ft downgradient in fracture zones field log bores for DNAPL horizons Check wells for DNAPL, sample groundwater, and analyze for VOCs & SVOCs Install up to 2 UFZ monitoring wells to 30-40 ft south of impact area guided by fracture location/orientation evaluation to investigate connection with Clifton Drainage residential area impact 	 Installed one UFZ monitoring well Checking well for DNAPL and sampling groundwater is ongoing Installed one UFZ monitoring well for Clifton Drainage connection. No additional step-out wells are recommended. 	1. Foo featu 2. Plu conce 3. If D 4. If g need defini
Delineation of DNAPL and plume in isolated Kearney Street area complicated by other potential sources (asphalt production plant, petrochemical liquid transporter)	 Focus extent delineation effort to avoid, as practicable, other potential sources Determine if impact in this area is related to Site or other source 	 Use refined fracture zone locations from Section B to focus new delineation well installations in migration pathways Research characteristics of other potential source locations and releases Compare chemistry of DNAPL and plume COCs in wells to chemical data from other potential sources 	 No additional wells are recommended in this area Other potential source locations and releases were researched Collect DNAPL from RW-21, WL MW-3, SMW-12C, and RW-9 for fingerprint analyses and comparisons 	1. Loc and ir impac 2. Sin chem sourc 3. Sin

REVISED - 8/30/2018

cision Factors or Criteria

f likely migration pathways are identified, use ormation to focus location for new delineation onitoring wells.

Use identified hot spots and migration pathways to focus GOST borings

f offsite migration potential is likely, evaluate current covery network and recommend changes if appropriate

Focus well locations along identified fracture/karst tures from Section B

Plume edge for delineation is defined by COC ncentrations greater than GWPS

f DNAPL present, no groundwater sampling is needed

New wells along Kearney Street will be checked for bundwater production in both shallow UFZ and deeper gration pathway. If no water production is evident in ring, no well will be constructed in that zone. If water bduced in both zones, two wells will be installed and instructed to separately monitor each zone

Focus well locations along identified fracture/karst atures from Section B

Plume edge for delineation is defined by COC ncentrations greater than GWPS

f DNAPL present, no groundwater sampling is needed f groundwater sampled results exceed GWPS, evaluate ed for downgradient step-out wells based on plume finition by identified fracture control and analytical data

Location of other source areas on/near fracture zones d in upgradient locations increases potential as source of pact; locations distant or downgradient lessens potential

Similar chemical signature of other source impact to emical signature of impact in wells increases other urce potential; dissimilar signature lessens potential

Similarity of impact chemistry in Kearney St area to Site

Issue Statements	Objective	Investigation Approach	Status/Recommendations	Dec
				impa 4. If no fu wells
 UFZ DNAPL and plume not delineated at/beyond east Facility boundary DNAPL observed deep at east Site border (SMW-12C) Dissolved phase plume concentrations exceed GWPS at Facility boundary UFZ dissolved plume is no longer fully delineated to South Higher dissolved phase concentrations have shifted south from SMW-60 Detections in SMW-62 & SMW-64 exceed GWPS Influence from possible northeast-southwest fracture trend is unknown 	Define the UFZ horizontal extent of DNAPL and dissolved plume, and vertical distribution of DNAPL, to the east using a step-out investigation approach Define the UFZ horizontal extent of plume in the off-site area southwest, south and-southeast of Site impact, considering both fracture direction and groundwater flow direction	 Install 2 UFZ monitoring wells to 40 ft within 300 ft of site border northeast and southeast of Site impacted border area. (SMW-77 and SMW-78) Field log bores to identify DNAPL horizons Check wells for DNAPL, obtain groundwater samples, and analyze for VOCs & SVOCs If indicated by decision criteria, install step-out wells outward to east-northeast & east-southeast along fracture/karst migration orientations from Section B Utilize migration pathways evaluation from Section B to install 2 UFZ wells to 25 ft in the southwest off-site area (see Figure 10.0) Install one UFZ well to 30 ft south of RW-20 (a DNAPL well) for delineation and to evaluate capture of the PC-7 pumping network at this central location Utilize groundwater flow direction, and any new migration pathways evaluation from Section B, to install 2 UFZ wells to 25 ft in the south and southeast off-site areas downgradient of SMW-62 & SMW-64 (see Figure 10.0) Check wells for DNAPL, obtain groundwater samples, and analyze for VOCs & SVOCs Collect water level data from new monitoring wells and other south area monitoring wells to better define groundwater flow patterns 	 Two UFZ monitoring wells east of Facility installed Checking wells for DNAPL and groundwater sampling is ongoing Based on results of groundwater sampling, no additional monitoring wells are recommended Two UFZ monitoring wells southwest of Facility installed, one remains dry Lack of BNSF access prevented new wells to the south and southeast of Pumping Center 7. One off-site existing well on BNSF property south of Facility (SMW-60) was rehabilitated as southern delineation point. Checking wells for DNAPL and groundwater sampling is ongoing Evaluation of groundwater flow patterns is ongoing. No additional monitoring wells are recommended 	1. Fo featu 2. Pl conc 3. If 4. If step ROW 1. Fo featu 2. Pl conc 3. If 4. If neec and
D. IDENTIFY AND CHARACTERIZE	POTENTIAL EXPOSURE PATHWAYS TO I	DNAPL AND DISSOLVED PHASE PLUMES		
Because the nature and extent of DNAPL and UFZ plume are no longer delineated by the existing well network, it is not possible to determine if potentially complete effective exposure pathways (e.g. vapor intrusion, dermal contact, whole body contact), and construction worker) are present.	Identify potentially complete exposure pathways based on updated groundwater data and evaluate the potential for unacceptable risk	 Perform an initial assessment of analytical results from existing wells at the northeastern and eastern Facility boundaries, reviewing concentrations and depth to groundwater by compare existing groundwater analytical data, and analytical results from newly installed wells to applicable U.S. EPA screening levels for vapor intrusion, dermal exposure, whole body contact exposure pathways. Update evaluation with recent analytical data from new monitoring well sampling Complete delineation of DNAPL and dissolved phase plumes as described in Section C above 	 Groundwater analytical data from existing and new wells were evaluated by VISL for vapor intrusion pathway. DNAPL and dissolved phase plumes are delineated 	1. If scree whol rece 2. D proto com 3. Ido pote

REVISED - 8/30/2018

cision Factors or Criteria

pact chemistry increases potential

If other sources are more likely than Site, recommend o further characterization; if Site is likely source and new ells fail to delineate, recommend additional delineation

Focus well locations along identified fracture/karst atures identified from Section B

Plume edge for delineation is defined by COC ncentrations greater than GWPS

If DNAPL present, no groundwater sampling is needed

If groundwater sampled results exceed GWPS, install ep-out wells as a phased approach utilizing street and/or DWs

Focus well locations along identified fracture/karst atures from Section B and downgradient flow directions

Plume edge for delineation is defined by COC ncentrations greater than GWPS

If DNAPL present, no groundwater sampling is needed

If sampled groundwater results exceed GWPS, evaluate eed for further step-out wells based on plume definition and analytical data

If groundwater analytical data comparisons to U.S. EPA reening levels for vapor intrusion, dermal exposure, and nole body contact exposure pathways, identify potential ceptors

Determine whether immediate action is necessary to be otective of human health while investigations are being mpleted

Identify additional sampling needed to complete tential exposure and risk evaluations

• Delineate extent of screening level exceedances in groundwater

Issue Statements	Objective	Investigation Approach	Status/Recommendations	Deci
		3. Install shallow and deep soil vapor wells if VISL evaluation indicates potentially complete exposure pathway, collect vapor samples, analyze for volatile organic site COCs and naphthalene, and compare data to applicable U.S. EPA screening levels	3. Soil gas sampling was performed, followed by residential indoor and outdoor air sampling. Indoor and outdoor air sampling, and residential media sampling, is being implemented under the Indoor Air Work Plan (EWI, 2017)	4. De inclu to co
Potential for current and future on-site exposure from near surface residual contamination at former operations area has not been fully evaluated, for example: • Former Landfarm area • Drip Track area • Black Tie storage area	Determine if concentrations of residual contaminants in soil at on- site former operations areas pose potential unacceptable risk for surface uses of Facility	 Evaluate historical soil sample analytical data from former operations areas, and compare results to appropriate U.S. EPA screening levels for potential exposure risk As appropriate from historical evaluation in (1), collect shallow (< 2 ft) soil samples for analysis of Facility COCs from former operational areas with indicated risk, or from areas lacking historical data. Compare analytical results to appropriate U.S. EPA screening levels 	 Historical soil sample analytical data was evaluated for potential exposure risk Three shallow soil samples were collected from operational areas and evaluated. Shallow soil sampling and risk evaluation in more extensive Facility areas by Incremental Sampling Methodology is recommended 	 If risk of from If rom If risk, and f
E. UPDATE UNDERSTANDING OF	POTENTIAL FOR CONTAMINANT VERTIC	AL MIGRATION PATHWAY FROM UFZ TO SFZ		
 Groundwater monitoring data indicates vertical migration (from UFZ to SFZ) may be occurring: BMW-5A in center Site had DNAPL and fractures to 80 ft deep, with apparent hydraulic connection to BMW-5 at 138 ft BMW-10R in southwest Site has high plume COC concentrations, and fractures spanning the UFZ and SFZ These wells lie along extension of southwest-trending Clifton Drainage karst trough 	 Identify and characterize likely vertical migration pathway to SFZ to aid in effective design of further delineation and/or corrective measures for SFZ impact Identify SFZ migration zone and impacted horizon depths in SFZ for appropriate design of well monitoring intervals to avoid potential cross-contamination between UFZ and SFZ Determine if DNAPL is present in the SFZ beyond BMW-5 	 Two phased approach: Evaluate historical records Review UFZ and SFZ well boring logs near BMW-5 and BMW-10R for evidence of vertical migration features and DNAPL occurrence Evaluate head differences and changes for historical water levels in those UFZ and SFZ wells for evidence of hydraulic connectivity Install one SFZ monitoring well each near BMW-5 and BMW-10R within likely footprint of northeast fracture zone, using this iterative drilling and monitoring process: Case well 15 ft into bedrock and drill to 80 ft as open bore Video well and collect low flow samples at 25 and 60 ft depths for VOC & SVOC analysis Ream out 10" to 80 ft, grout in 6" casing, and open bore drill to 180 ft Video well and collect low flow samples at 90, 125, and 175 ft depths for VOC & SVOC analysis Evaluate logged, video, and vertical sampling data for indications of impact horizons and potential vertical migration potential, and compare results to monitoring intervals in other BMW wells 	 Evaluated historical records, no additional records evaluation needed Installed and videoed new BMW well near BMW-5. No additional wells there are needed. Planned BMW well near BMW-10R only installed to 80 ft due to DNAPL entry. No additional well at this location is recommended. Evaluated video of wells; DNAPL monitoring and evaluation of downward migration is ongoing 	1. Wi 2. Mi karst 3. Sn eleva simili othe 4. Fie • 1 • 1 t • 5 • F

REVISED - 8/30/2018

ecision Factors or Criteria
 If groundwater VISL evaluation indicates potential risk, then soil vapor wells will be installed Determine next steps based on all sampling results, cluding implementation of interim actions, if necessary, control potential exposure(s)
If initial screening indicates Facility areas with potential k or areas with no data, sample to obtain recent data om those areas
If recent sampling results indicate potential exposure k, determine appropriate mitigation options for present d future land use

Well logs must have geologic description to evaluate Migration/monitoring indicators are geologic fractures, rst, DNAPL presence, water entry indications

Small UFZ-SFZ head differences combined with lower UFZ evations than other wells suggest hydraulic connection; nilar patterns through seasons of UFZ with SFZ well vs her pairs may also indicate connectivity

Field evidence of UFZ-SFZ connection via fractures:

- DNAPL horizons spanning UFZ SFZ
- Visual vertical fractures or evidence of fracturing into the SFZ
- Similar analytical data in UFZ and SFZ
- Rapid recharge of water into SFZ when removed

Issue Statements	Objective	Investigation Approach	Status/Recommendations	Deci
F. UPDATE DELINEATION OF SECO	ONDARY FLOW ZONE DISSOLVED PHASE	PLUME		
 On-site SFZ plume is not delineated at two locations Southwest at BMW-10R (high COC concentrations) North at BMW-02 (decreasing concentration trend) 	 Define the on-site and off-site SFZ horizontal extent of plume in area of BMW-10R Determine need for/scope of corrective measures. 	 Install 2 SFZ monitoring wells in addition to the SFZ vertical delineation well from (E) to 180 ft, northwest and southwest of BMW-10R. Field log bores to identify DNAPL horizons Check wells for DNAPL, obtain groundwater samples, and analyze for VOCs and SVOCs Evaluate plume concentration trends in BMW-2 from Permit sampling events. Perform Mann-Kendall Analysis to evaluate plume stability 	 Installed one SFZ monitoring well northwest of BMW-10R after first attempt encountered void and completed as SMW well. Southwest well not installed due to no off-site access. Recommend evaluating BMW- 10R concentration trend for further delineation need. Checking wells for DNAPL and groundwater sampling is ongoing Evaluate BMW-2 statistical trends 	1. Pl conc 2. If 3. If neec and a conc out v pred delin
G. UPDATE IDENTIFICATION AND	CHARACTERIZATION OF ON-SITE SOUR	CE MATERIAL		
 Extent of remediation of former SWMUs is uncertain, and residual source material may be present Ongoing DNAPL recovery north, east, central Site areas High plume COC concentrations on-site 	 Confirm on-site source areas have been identified by previous investigations. Update information on the location, volume, mobility and leachability of source material present. Identify physical site characteristics that affect ability to remove, treat and/or contain source materials. 	 Perform TarGOST investigation in source areas with borings on 45-ft spacing in orthogonal grid pattern around source SWMU ponds (see Figure 12.0) Grid orientation north-south, east-west to intersect northwest and northeast fracture trends that may act to collect mobile DNAPL Target edges of former ponds where DNAPL is recovered Extend grid lines and fill in as necessary to delineate DNAPL masses Use Geoprobe borings to sample TarGOST "hot spots" for visual evaluation and to collect and analyze samples for chemical verification and geotechnical parameters that may be needed for remedial option evaluation 	 TarGOST investigation completed. Three follow-up Geoprobe borings were completed and sampled Additional residual DNAPL borings may be considered if needed for remedial option evaluation 	1. If ar 2. If pr dr 3. If pr tr
H. EVALUATE PUMPING CENTER	1 HYDRAULIC CAPTURE AND CURRENT (CAPACITY OF PUMPING CENTERS	I	
 Hydraulic control at Pumping Center 1 may not be consistent, and capacity to handle increased pumping is not known Concentrations of COCs in downgradient wells remain elevated Groundwater surface seep occurs during high precipitation recharge events 	Determine strength, consistency, and potential need for increased hydraulic control in central area of Pumping Center 1 near seep	 Evaluate historical hydraulic control at PC-1 from historical potentiometric map patterns, water level data, and pumping rate changes Evaluate current hydraulic control at central PC-1 area near seep Install unconsolidated zone piezometer at area of high recharge seep Collect manual and automatic-recorded water levels from piezometer and immediate downgradient monitoring wells Perform short term pumping test with higher rate pump and monitor water levels 	 Historical evaluation of PC-1, and other PCs, completed. Piezometer not installed due increased hydraulic control from repaired recovery wells. Water level auto-recording in PC-1 is ongoing. Increased hydraulic control and semi- continuous water level recording precludes need for pumping test 	1. Hy • I • I • I • I • I • I • I • I

cision Factors or Criteria

Plume edge for delineation is defined by COC ncentrations greater than GWPS

If DNAPL present, no groundwater sampling is needed If sampled groundwater results exceed GWPS, evaluate eed for further step-out wells based on plume definition ad analytical data. If statistical increasing or unstable oncentration trend is indicated, evaluate additional steput well options. If statistical decreasing trends redominate, evaluate as likely stable and evaluate elineation based on groundwater flow direction

If DNAPL masses are indicated in two nearby evaluated areas, use fill-in borings to test for connection

If results indicate large masses of DNAPL, evaluate mobility potential (mass size, DNAPL volume estimate, proximity to migration pathways, historical recovery downgradient)

If DNAPL masses are present and have mobility potential, design appropriate stabilization, removal, or treatment measures options.

Hydraulic control indicated by:

- Hydraulic gradient toward pumping center
- Monitoring well head decreases with increased pumping
- Controlled piezometer water level during precipitation induced increased recharge events

Data from dry and wet seasons are needed for full aluation

Issue Statements	Objective	Investigation Approach	Status/Recommendations	Deci
 Recovery system capacities are uncertain at system Pumping Centers Design capacity of current system pumping centers are not known Potential to increase pumping within Pumping Centers existing 	Objective Determine current system effluent flow capacities for each pumping center, and combined centers capacity for system	 Investigation Approach Calculate effluent line capacity capability using piping dimensions, infrastructure restrictions, friction losses, existing pumping outputs, and treatment system in-flow mechanical arrangements for each pumping center for existing network setups Calculate maximum pump rate output for each pumping center based on calculated existing piping capacity for that pumping center 	Status/Recommendations 1. Effluent line capacities at all PCs were calculated 2. Maximum pump rates were calculated for all PCs. Actual effluent pumping and treatment system capacities have been monitored. PC output and treatment system handling capability monitoring is ongoing	1. 2. 3.

NOTE:

BOLD FONT indicates ongoing or investigation actions that still need to be performed

REVISED - 8/30/2018

cision Factors or Criteria

- Calculations based on available piping data, map measurements, and current pump performance data
- Calculations assume unobstructed pipe internal volume
- Friction losses and other engineering parameters for calculations will use standard textbook reference values for piping type, dimensions, and restrictions as estimated where not available from design documents
- No field measurements or testing will be done as part of this capacity evaluation

Table 6.0 MANN-KENDALL ANALYSIS OF ANALYTICAL DATA FOR BRW-2

SAMPLE	DATE	Acenaphthylene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene
LOCATION										
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	9/16/2010	4	33	19	30	28	3	9	740	-
	9/28/2011	2	6	5	7	6	1	3	1	-
	10/16/2012	0.3	0.2	0.1	0.1	0.2	<0.1	<0.1	4	7
	9/22/2014	0.3	0.1	0.3	0.3	0.2	<0.1	0.2	0.9	0.4
	9/23/2015	0.2	0.1	<0.1	<0.1	0.2	<0.1	<0.1	4	6
	9/6/2016	0.1	0.3	<0.1	0.2	0.2	<0.1	<0.1	<0.1	5
	9/23/2017	<0.1	0.6	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	1
BRW-2	Number of Times Sampled (n) =	7	7	7	7	7	7	7	7	5
DIW 2	Number of Detects	6	7	4	5	7	2	3	5	5
	Range (Min-Max)	.0500 - 4.0000	.1000 - 33.0000	.0500 - 19.0000		2000 - 28.000	.0500 - 3.0000	.0500 - 9.0000	.0500 - 740.0000	.4000 - 7.0000
	Recent Maximum =	0.3	0.6	0.3	0.3	0.4	0.05	0.2	4	7
	Recent Average =	0.19	0.26	0.11	0.14	0.24	0.05	0.08	1.8	3.88
	Standard Deviation =	1.4906	12.2031	7.0712	11.1513	10.3547	1.113	3.3686	279.0689	2.9953
	Coefficient of Variation (CV) =	1.5014	2.1196	2.0162	2.0705	2.0592	1.8331	1.9016	2.6046	0.772
	Trend >= 80% Confidence Level	Decreasing	Neither	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing	Neither
	Trend >= 90% Confidence Level	Decreasing	Neither	Decreasing	Decreasing	Neither	Decreasing	Decreasing	Decreasing	Neither
	Trend Stability	N/A	Non-Stable	N/A	N/A	N/A	N/A	N/A	N/A	Stable
	Parameter Totals	Acenaphthylene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene
	# of Increasing Trends	0	0	0	0	0	0	0	0	0
	# of Decreasing Trends	1	0	1	1	1	1	1	1	0
	# of No Trend/Stable	0	0	0	0	0	0	0	0	1
	# of No Trend/Non-Stable	0	1	0	0	0	0	0	0	0
TOTALS					erAll Totals					
					nitoring Locations					1
					creasing Trends					0
					creasing Trends					7
					lo Trend/Stable					1
				# of No	Trend/Non-Stable					1

NOTES:

mg/L = milligrams per liter

ATTACHMENT A

REMEDIAL ACTION OPTIMIZATION UPDATE AND MEMORANDUM

Former Tronox Facility 2800 High Street, Springfield, Missouri

WELL ID	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	l/bh	Benzo(a)pyrene) benzo(b)fluoranther	Benzo(k)fluoranther	2-Chlorophenol ۱/۵۴	Chrysene I/ ⁶	Dibenz(a,h)anthrace	Dibenzofuran	l∫6t 1,2,4-Dimethylphenol	Strainitrophenol	Fluoranthene	Fluorene Horene	트 Indeno(1,2,3-cd)pyr	l/bf	Naphthalene	Phenanthrene I/ ^{DH}	Phenol I/bdi	l/bh	Pyrene	μg/l	Total PAHs	Benzene I/fan	I//6t/	Toluene	کاروند Xylenes (Total)
GROUNDWATE	R PROTECTION	1200	0.1	9600	0.1	0.2	0.1	0.1	0.5	0.1	0.1	7.9	540	70	300	1300	0.1	36	<u>20</u>	0.1	300	NS	960	NS	NS	μg/1 5	700	1000	10000
STAN	DARD	1200	0.1	5000	0.1	0.2	0.1	0.1	0.5	0.1	0.1							50	20	0.1	500		500		115		700	1000	
	12/6/2013	32	0.3 J	0.5 3	< 0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	6	<0.5	<10	A-SITE WEL	15	<0.1	<0.1	2	2	<0.5	NS	<2	NS	NS	<0.2	<0.2	<0.2	<0.6
PW-01	9/23/2015	17	0.1 J	0.2	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	0.1 J	-	<0.5	<10	2	8	<0.1	0.1 J	8	0.4 J	<0.5	NS	1	NS	36.9	<0.2	<0.2	<0.2	<0.2
	9/9/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.6	<0.1	<0.1	<0.6	<0.6	<11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.6	<2	<0.1	NS	0	<0.2	<0.2	<0.2	<0.2
PW-03	12/6/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	< 0.5	<10	<0.1	<0.1	<0.1	<0.1	0.1 J	<0.1	< 0.5	NS	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.6
PW-14	12/6/2013	28	<0.1	0.3 3	0 <0.1	< 0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	7	6	<0.1	<0.1	0.1 J	< 0.1	<0.5	NS	3	NS	NS	<0.2	<0.2	<0.2	<0.6
	2/4/2010	390	6	NS	<1	<1	<1	NS	<1	<1	<1	NS	<3	<20	29	NS	<1.0	NS	7400	NS	<1	NS	NS	NS	7825	<3	50	12 J	130
	4/12/2011	450	6	NS	<1	<1	<1	NS	<1	<1	<1	NS	7 J	<10	28	NS	<1.0	NS	6500	NS	<1	NS	NS	NS	7023	6.5	63	19	150
	9/26/2011	410	7	NS	1 3	J <1	<1	NS	<5	<1	<1	NS	9 J	<100	36	NS	<1.0	NS	5300	NS	<5	NS	NS	NS	5753	8.1	57	22	150
PW-20	4/1/2012	400	7	13	0.7	0.2 J	0.3 J	0.1 J	<0.5	0.5	<0.1	260	2	<10	35	240	<0.1	600	5700	280	<0.5	31	18	<0.17	6694	11	73	24	170
PW-20	12/7/2013	390	6	10	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	240	5	<10	26	230	<0.1	560	6100	260	<0.5	NS	13	NS	NS	6.9	67	21	170
	4/15/2014	430	5	10	0.2	J <0.1	<0.1	<0.1	<0.5	<0.1	<0.1	290	9	<10	23	270	<0.1	430	6700	240	<0.5	28	11	<0.15	7689	6.3	46	15	130
	4/20/2015	370	4	8	0.2	J <0.1	<0.1	<0.1	<0.5	0.2 J	<0.1	220	2	<10	23	200	<0.1	530	5400	230	<0.5	NS	12	NS	6247.4	9.8	62	16	140
	4/27/2017	300	4	9	0.2	J <0.1	<0.1	<0.1	<0.5	0.2 J	<0.1	180	11	<11	18	170	<0.1	390	4500	200	<0.5	24	10	NS	NS	14	76	23	180
SMW-01	12/5/2013	<0.1	<0.1	<0.1	<mark>0.3</mark>	J 0.2 J	0.2 J	0.1 J	<0.5	0.2 J	<0.1	<0.5	<0.5	<10	0.6	<0.1	<0.1	<0.1	<0.1	0.2 J	<0.5	NS	0.5	NS	NS	<0.2	<0.2	<0.2	<0.6
	12/6/2013	0.2	J 1	1	15	8	15	6	<0.5	16	0.8	<0.5	<0.5	<10	18	0.5	3	<0.1	0.2 J	2	<0.5	NS	18	NS	NS	<0.2	<0.2	<0.2	<0.6
SMW-03	9/23/2015														DNAPL	IN WELL													
	9/9/2016	19	0.8	0.4]	0.1	J <0.1	<0.1	<0.1	<0.5	<0.1	<0.1	14	<0.5	<10	4	15	<0.1	9	25	16	<0.5	<2.0	2	NS	82.30	<0.2	0.8 J		2.7
	9/16/2010	38	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	2 J	NS	<1.0	NS	<1.0	NS	3 J	115	NS	NS	38	<0.2	1.8	0.3 J	2.4 J
	9/27/2011	85	0.6 J	NS	<0.3	< 0.3	0.3 J	NS	<1.0	< 0.3	< 0.3	NS	<1.0	<27	4	NS	< 0.3	NS 0.25	1]		<1.0	NS 12.0	NS 07	NS	89	< 0.2	1.7	<0.2	2.5 J
SMW-11B	10/16/2012 12/7/2013	23 <0.1	0.2 J <0.1	0.6 0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.6 <0.5	<0.1 <0.1	<0.1 <0.1	2 <0.5	<0.6 <0.5	<11 <10	2 0.2 J	14 2	<0.1 <0.1	0.25 <0.1	0.5 J	0.8	<0.6 <0.5	<2.0 NS	0.7 <0.1	NS NS	51 NS	<0.2 <0.2	1 <0.2	<0.2 <0.2	1.4 J <0.6
5.00 115	9/23/2014	23	0.1 J	0.3 3	<0.1 <0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5 2	< 0.5	<10	1	13	<0.1	<0.1 0.7	<0.1 69	8	<0.5	<2	0.6	NS	115	<0.2	0.2	<0.2	<0.0 1.1
	9/24/2015	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.2 J	<0.1	<0.1	<0.1	<0.1	0.2 J	<0.5	NS	0.4 J	-	0.8	<0.2	<0.2	<0.2	<0.2
	9/9/2016		J <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.1 J	0.2 J	<0.1	<0.1	<0.1	0.2 J	<0.5	<2.0	<0.1	NS	0.6	<0.2	<0.2	1.5	0.8 J
SMW-12C	12/6/2013		- []		1				1						NAPL IN WEI			1						1		1			
	9/15/2010	<1	<1	NS	<1	<1	<1	NS	<1	<1	<1	NS	<3	<10	<1	NS	<1	NS	<1	NS	<1	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	9/27/2011	<0.1	<0.1	NS	<0.1	<0.1	<0.1	NS	<0.5	<0.1	<0.1	NS	<0.5	<10	0.3 J	NS	<0.1	NS	<0.1	NS	<0.5	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	10/16/2012	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2	<0.1	NS	0	<0.2	<0.2	<0.2	<0.6
SMW-13	12/6/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	0.1 J	<0.1	<0.1	<0.1	<0.1	<0.5	NS	0.3 J	NS	NS	<0.2	<0.2	<0.2	<0.6
5000-15	4/15/2014	0.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.2 J	0.6	<0.1	<0.1	1	0.1 J	<0.5	<2	0.2 J	NS	2	<0.2	<0.2	<0.2	<0.2
	9/23/2014	0.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.2 J	0.6	<0.1	<0.1	1	0.1 J	<0.5	<2	0.2 J	NS	2	<0.2	<0.2	<0.2	<0.2
	9/23/2015	0.8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	0.7	<0.1	0.2 J	6	0.2 J	<0.5	NS	0.6	NS	8.3	<0.2	<0.2	<0.2	<0.2
	9/9/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2	0.2 J	NS	0.2	<0.2	<0.2	<0.2	<0.2
	9/15/2010	220	3 J	NS	3 .		3 J	NS	<1	2 J	<1	NS	<3	<10	50	NS	<1	NS	1600	NS	<1	NS	NS	NS	1870	0.9 J	6.2	0.8 J	16
	9/27/2011	200	3	NS	3	0.6	1	NS	<0.5	2	<0.1	NS	<0.5	<10	44	NS	0.3		1300	NS	<0.5	NS	NS	NS	1553.6	2.7 J	8.9	1.8 J	17
	10/16/2012	260	3	4	1	0.2 J		0.2 J	<0.5	0.9	<0.1	130	<0.5	<11	34	140	0.1]		1400	41	<0.5	<2	14	NS	1899	1.9	7.7	0.8 J	13
SMW-14	12/6/2013	250	2	3	0.5) <0.1	<0.1	<0.1	< 0.5	0.3 J	<0.1	130	<0.5	<10	24	140	<0.1	16	1200	27	<0.5	NS	11	NS	NS	1.6	4.7	0.5 J	8.8
	4/15/2014	230	2	5	2	0.4 J		0.2 J		1	<0.1	100	< 0.5	<10	41	140	<0.1	11	680	14	<0.5	<2	25	NS	1141	2	5.8	0.6 J	8.5
	9/23/2014	230	2	5	2	0.4 J		0.2 J	-	1	<0.1	100	<0.5	<10	41	140	<0.1	11	680	14	< 0.5	<2	25	NS	1141	2	5.8	0.6 J	8.5
	9/23/2015	410	2	10	3	0.6	0.9	0.4 J	<0.5	2	<0.1	250	<0.5	<10	46	250	0.1]	140	3200	87	<0.5	NS	26	NS	4038	1.5	7.5	0.9 J	17

WELL ID	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranther	Benzo(k)fluoranther	2-Chlorophenol	Chrysene	Dibenz(a,h)anthrace	Dibenzofuran	2,4-Dimethylphenol	2,4-Dinitrophenol	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyr	2-Methylnaphthalen	Naphthalene	Phenanthrene	Phenol	2-Picoline	Pyrene	2,4-D	Total PAHs	Benzene	Ethylbenzene	Toluene	Xylenes (Total)
GROUNDWATI		µg/l	µg/l	μg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	μg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	μg/l	μg/l
STAN	IDARD	1200	0.1	9600	0.1	0.2	0.1	0.1	0.5	0.1	0.1	7.9	540	70	300	1300	0.1	36	20	0.1	300	NS	960	NS	NS	5	700	1000	10000
	9/15/2010	210	9	NS	94	43	75	NS	<1	63	5	NS	<3	<10	350	NS	15	NS	77	NS	<1	NS	NS	NS	941	2.7	6.4	1.9	9.3
	9/27/2011	170	8	NS	56	25	47	NS	<3	38	2 J	NS	<3	<51	250	NS	9	NS	55	NS	<3	NS	NS	NS	658	4.8	9.7	2.1	11
	10/16/2012	210	8	30 D	79	29 D			<0.5	41 D	2	110	<0.5	<10	340	160	10	9	230	160 D	<0.5	<2.0	180 [- 110	1547	3.2	9.6	2	15
SMW-15	12/6/2013	100	2	4	1	0.2 J			<0.5	0.7	<0.1	43	<0.5	<10	20	65	<0.1	0.2 J	89	4	<0.5	NS 12.0	10	NS	NS	7	12	1.6	11
	4/15/2014 9/23/2014	130 130	2	5	1	0.3 J 0.3 J	0.6	0.2 J 0.2 J	<0.5 <0.5	0.9	<0.1 <0.1	43 43	<0.5 0.8 J	<10 <10	26 26	81 71	<0.1 <0.1	2	170 170	3	<0.5 <0.5	<2.0 <2.0	13 13	NS NS	433 433	5.6 5.6	9.7 9.7	2.4 2.4	14 14
	9/24/2015	100	1	4	2	0.9	1	0.2 5	<0.5	2	0.1		<0.5	<10	20	63	<0.1 0.4 J		<0.1	4	<0.5	NS	13	NS	215.9	5.6	3.2	2.4 0.5 J	3.3
	9/10/2016	51	- 0.5 J	2	1	0.4 J	0.7	0.2 J	<0.5	0.7	<0.1	3.0	<0.5	<11	16	34	0.2]	<0.1 <0.1	0.2	0.7	<0.5	<2.0	9	NS	116.6	<0.2	<0.2	<0.2	<0.2
	9/16/2010	<1.0	<1.0	 NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	<1.0	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	9/27/2011	<0.6	<0.6	NS	<0.6	<0.6	<0.6	NS	<3.0	<0.6	<0.6	NS	<3.0	<55	<0.6	NS	<0.6	NS	<0.6	NS	<3.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	10/17/2012	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.1	J <0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	0.1		0	<0.2	<0.2	<0.2	<0.6
	12/6/2013	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.2	<0.2	<0.2	<0.6
SMW-16	4/15/2014	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.5	<0.1	<0.1	<0.5	< 0.5	<11	<0.1	<0.1	<0.1	< 0.1	0.1	J <0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.2
	9/23/2014	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	0.1	J <0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.2
	9/24/2015	0.3 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	0.1 J	<0.1	<0.1	0.8	<0.1	<0.5	NS	<0.1	NS	1.2	<0.2	<0.2	<0.2	<0.2
	9/10/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.6	<0.1	<0.1	<0.6	<0.6	<11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.6	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.2
	2/4/2010	330	21	NS	5 J	J 2 J	4 J	NS	<1.0	4 J	<1.0	NS	<3.0	<21	41	NS	<1.0	NS	4800	NS	<1.0	NS	NS	NS	5192	<3.0	25 J	<4.0	37
	4/12/2011	560	35	NS	1)	J <1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	32	NS	<1.0	NS	10000	NS	<1.0	NS	NS	NS	10527	1.8	44	4.7	59
	9/27/2011	450	26	NS	17	6	11	NS	<5.0	12	<1.0	NS	<5.0	<100	110	NS	2 J	NS NS	5500	NS	<5.0	NS	NS	NS	6132	2.3	50	6.2	81
SMW-17	4/1/2012	390	17	12	8	3	5	2	<0.5	5	0.3 J	220	<0.5	<10	43	200	0.9	360	4400	220	<0.5	<2.0	25	<0.17	5331	1.2	23	3.1	35
5.111 17	12/5/2013	300	11	6	0.2 J	J <0.1	<0.1	<0.1	<0.5	<0.1	<0.1	160	<0.5	<10	10	150	<0.1	200	3000	120	<0.5	NS	6	NS	NS	3.1	27	4.3	35
	4/15/2014	380	15	9	0.3 J	J <0.1	<0.1	<0.1	<0.5	<0.1	<0.1	210	<0.5	<10	20	180	<0.1	230	3300	160	<0.5	<2.0	10	<0.15	4074	2.3	13	3.7	39
	4/20/2015	110	3	1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	56	<0.5	<10	2	49	<0.1	89	1200	28	<0.5	NS	0.9	NS	1393.9	1 3	7	1	10
	4/27/2017	47	0.6	0.3 J	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	5	0.6 J	<11	0.3 3	J 16	<0.1	<0.1	<0.1	3	<0.6	<2.0	<0.1	NS	NS	0.3 3	3.3	0.6 J	5.5
	9/17/2010	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	<1.0	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	9/27/2011	<0.1	<0.1	NS	<0.1	<0.1	<0.1	NS	<0.5	<0.1	<0.1	NS	<0.5	<10	<0.1	NS	<0.1	NS	<0.1	NS	<0.5	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	10/17/2012	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.5	<0.1	<0.1	<0.5	< 0.5	<10	0.1 3	J <0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.6
SMW-18	12/6/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.5	NS	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.6
	4/15/2014		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	0.4 J		<0.1		J <0.1	<0.5	<2.0	<0.1	NS	U	<0.2	<0.2	< 0.2	<0.2
	9/23/2014		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	0.1 J		<0.1		J <0.1	< 0.5	<2.0	<0.1	NS	0	<0.2	<0.2	< 0.2	<0.2
	9/24/2015 9/10/2016	0.4 J	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.5 <0.6	<0.1 <0.1	<0.1 <0.1	<0.5 <0.6	<0.5 <0.6	<10 <12	<0.1	0.2 J <0.1	<0.1	<0.1		J <0.1 J <0.1	<0.5 <0.6	NS <2.0	<0.1 <0.1	NS NS	0.9	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
SMW-19	12/6/2013	\U.1	\U.1	\U.1	\U.1	NU.1	VU.1	×0.1	\U.U	\U.1	\U.1	NO.0	\U.U			ELL, NO SAN		\U.1	0.2	• \0.1	\U.U	~2.0	\U.1	113	0.2	NU.2	NU.2	NU.2	NU.2
5111 15	2/4/2010	530	11	NS	37	16	24	NS	<1.0	27	<1.0	NS	<3.0	<20	220	NS	5	NS	9500	NS	<1.0	NS	NS	NS	10370	12]	31	12 J	97
	9/16/2010														_	ELL, NO SAN						1	1	· ··-					
	4/12/2011	570	6	NS	6	2 J	4]	NS	<1.0	5	<1.0	NS	11	<10	51	NS	<1.0	NS	8300	NS	<1.0	NS	NS	NS	7949	7.9	29	9.6	84
	9/26/2011	590	9	NS	41	16	28	NS	<5.0	30	<1.0	NS	<5.0	<100	210	NS	5	NS	6700	NS	<5.0	NS	NS	NS	7629	8.5	33	10	98
SMW-22R	4/1/2012	510	7	21	16	5 J		4 J		12	<1.0	370	<5.0	<100	110	330		670	7300	370	<5.0	<21	64	<0.16	7849	12	30	12	95
	12/5/2013	420	5 J	10 J	<2.0	<2.0	<2.0	<2.0	<10	<2.0	<2.0	280	13 J		18	250	<2.0	400	5700	250	<10	NS	10	NS	NS	13	29	13	95
	4/15/2014	370	8	11		J <0.1	<0.1	<0.1	<0.5	<0.1	<0.1	230	6 J		21	220	<0.1	530	6500	240	<0.5	3 3		<3.0	7379	23	25	25	110
	4/7/2015	480	4	9) <0.1	<0.1	<0.1	<0.5	<0.1	<0.1	320	3	<10	19	270	<0.1	410	4700	250	<0.5	NS	10	NS	5742.1	9	21	7.2	58
	4/26/2017	350	3	6	0.1]) <0.1	<0.1	<0.1	<0.5	<0.1	<0.1	220	28	<11	16	200	<0.1	240	3400	190	<0.5	<2.0	9	NS	NS	9.6	15	6.8	45
SMW-27	12/5/2013						•				•				WELL DR	RY NO SAMP	LE							•	•				

WELL ID	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranther	Benzo(k)fluoranther	2-Chlorophenol	Chrysene	Dibenz(a,h)anthrace	Dibenzofuran	2,4-Dimethylphenol	2,4-Dinitrophenol	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyr	2-Methylnaphthalen	Naphthalene	Phenanthrene	Phenol	2-Picoline	Pyrene	2,4-D	Dotal PAHs	Benzene	Ethylbenzene Toluene	Xylenes (Total)
GROUNDWATE STAN	R PROTECTION DARD	µg/l 1200	μg/l 0.1	μg/l 9600	μg/l 0.1	μg/l 0.2	μg/l 0.1	μg/l 0.1	μg/l 0.5	μg/l 0.1	μg/l 0.1	μg/l 7.9	μg/l 540	μg/l 70	μg/l 300	μg/l 1300	μg/l 0.1	μg/l 36	μg/l 20	μg/l 0.1	μg/l 300	μg/l NS	μg/l 960	μg/l NS	μg/l NS	μg/l 5	μg/l μg/l 700 1000	μg/l 10000
	2/4/2010	160	2 J	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	3 J	<21	5	NS	<1.0	NS	1200	NS	<1.0	NS	NS	NS	1365	0.4 J	1.4 3.9	7.2
	9/17/2010	7	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	<1.0	NS	<1.0	NS	33	NS	<1.0	NS	NS	NS	40	<0.2	0.4 J <0.2	0.7
	4/12/2011	260	3 J	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	25	<10	5	NS	<1.0	NS	2500	NS	<1.0	NS	NS	NS	2785	0.7 J	5.8 2.2	12 J
	9/27/2011	290	3	NS	<0.1	<0.1	<0.1	NS	<0.5	<0.1	<1.0	NS	25	<10	6	NS	<0.1	NS	2900	NS	<0.5	NS	NS	NS	3224	1.2 J	6.5 3.2	J 15
	4/1/2012	240	3	7	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	140	3	0	7	140	<0.1	200	2600	83	<0.5	<2.0	3	NS	3083	0.6 J	5.7 2.2	12
	10/16/2012	200	2	7	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	110	3	<10	7	110	<0.1	110	1800	83	<0.5	<2.0	3	NS	2212	0.4 J	4.1 1.6	7.8
SMW-30	12/7/2013	230	2	8	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	140	61	<10	5	130	<0	210	2500	95	<1.0	NS	2	NS	NS	1 J	6 3	13
	4/14/2014	5	<0.1	0.4 J	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	2	2	<10	0.1 J	3	<0.1	<0.1	0.2		<0.5	<2.0	0.1 J		9	<0.2	<0.2 <0.2	<0.2
	9/23/2014	0.1 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	0.1	J <0.1	<0.5	<2.0	<0.1	NS	0	<0.2	1.6 0.7	J 3.4
	4/7/2015	3	<0.1	<0.1 0.7	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	2	<0.5	<10	<0.1	1	<0.1	<0.1	< 0.1	0.5 J	<0.5	NS	<0.1	NS	4.5	<0.2	<0.2 <0.2	0.3 J
	9/23/2015 9/8/2016	52 8.0	0.6 0.1 J	0.7 0.3 J	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.5 <0.5	<0.1 <0.1	<0.1	26 4.0	14 1.0	<10 <10	0.5 0.1 J	23 5	<0.1 <0.1	33 <0.1	140 <0.1	2.0	<0.5 <0.5	NS <2.0	0.3 J <0.1	NS NS	221.1 20.5	0.2 J <0.2	1.8 0.8 <0.2 <0.2	J 3.9 <0.2
	4/28/2017	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	NS	<0.2	<0.2 <0.2 <0.2	<0.2
	10/16/2016	150	6	16	36	17	25	11	<0.5	26	2	100	<0.5	<1.0	170	100	6	11	67	110	<0.5	<2.0	100	NS	842	<0.2	1.7 <0.2	3.8
SMW-76	2/1/2017	41	2	0.8	2	0.7	0.9	0.4	<0.5 J <0.6	2	<0.1	5	<0.6	<12	48	4	0.1 J		<0.1	1	<0.6	<2	21	NS	NS	<0.2	<0.2 <0.2	<0.2
	4/27/2016	29	0.8	0.6	0.8	<0.1	0.2	<0.1	<0.5	0.4 J	<0.1	16	<0.5	<11	20	15	<0.1	<0.1	4	0.3 J	<0.5	<2.0	6	NS	NS	<0.2	0.3 J <0.2	0.7 J
RW-01	11/13/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	0.4	J <0.1	<0.5	NS	<0.1	NS	NS	<0.2	<0.2 <0.2	<0.6
RW-02	11/13/2013	2	<0.1	0.5 J	2	0.4	J 0.6	0.3	J <0.6	2	<0.1	<0.6	<0.6	<12	36	<0.1	<0.1	<0.1	<0.1	0.2 J	<0.6	NS	33	NS	NS	<0.2	<0.2 <0.2	<0.6
RW-03	11/13/2013	0.2 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.6	<0.1	<0.1	<0.6	<0.6	<11	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.6	NS	0.3 J	NS	NS	<0.2	0.6 J <0.2	1.2 J
RW-04	11/13/2013	41	0.8	11	4	0.9	1	0.6	<0.5	2	<0.1	17	<0.5	<10	63	65	0.2 J) <0.1	<0.1	100	<0.5	NS	37	NS	NS	<0.2	1 J <0.2	2 J
RW-05	11/13/2013			-					_					1	NAPL IN WI	ELL, NO SAN	1PLE	_	1			T	T	T	T	1		
RW-06	11/13/2013	120	7	22	36	28	36	11	<0.5	20	2	9	<0.5	<11	230	65	13	<0.1	<0.1	190	<0.5	NS	160	NS	NS	<0.2	0.6 J <0.2	1.1
RW-07	11/13/2013	1200	260	300	430	150	220	100	<5.0	260	14	1000	3100	<110	2000	1400	44	1700	15000	3800	5100	NS	1300	NS	NS	210	81 400	530
RW-08	11/13/2013															ELL, NO SAN												
RW-09 RW-10R	11/13/2013 11/13/2013	540	17	63	77	34	49	20	<0.5	73	2	360	1	1	320	ELL, NO SAN 400	12	360	700	720	<0.5	NS	200	NS	NS	0.4 J	2.7 0.5	J 5.1
RW-10k	11/13/2013	74	1	2			49 J 0.2 J		<0.5	0.2 J	<0.1	22	1 8	<10 <10	5	400 31	<0.1	6	85	720	< 0.5	NS	3	NS	NS	6.2	6.3 0.7	
RW-11 RW-12R	11/13/2013	100	0.7	2 0.4 J	<0.1	<0.1	<0.1	< 0.1	<0.5	<0.1	<0.1	22	2	<10	3	19	<0.1	2	44	12	<0.5	NS	1	NS	NS	7.4	8.7 0.8	
	11/13/2013									-012					-	ELL, NO SAN					1015		-					
RW-14	11/13/2013	410	6	51 `	120	46	67	26	< 0.5	80	4	240	<0.5	<10	490	290		100	310	630	<0.5	NS	330	NS	NS	<1.0	10 <1.0	13
RW-15	11/13/2013	440	3	16	3	0.9	1	<0.6	0.6	2	<0.1	250	0.7 J	<11	58	230	0.2 J	J 230	2700	320	<0.6	NS	33	NS	NS	2	25 4.4	40
RW-16	11/13/2013	1900	84	320	470	160	230	100	<12	320	9 3	1300	150	<240	2400	1500	55	1600	12000	4600	55	NS	1600	NS	NS	42	97 58	180
RW-17	11/13/2013	15	0.2 J	0.2 J	0.7	<0.1	<0.1	<0.1	<0.6	0.5 J	<0.1	<0.6	<0.6	<12	20	19	<0.1	<0.1	0.5	J <mark>0.1 J</mark>	<0.6	NS	9	NS	NS	<0.2	<0.2 <0.2	<0.6
RW-18	11/13/2013	100	1	8	0.7	0.2	J 0.2 J	<0.1	<0.6	0.5 J	<0.1	55	<0.6	<11	40	130	<0.1	<0.1	1	7	<0.6	NS	21	NS	NS	<0.2	0.3 J <0.2	<0.6
RW-19	11/13/2013	57	1	0.8	0.2 J) <0.1	<0.1	<0.1	<0.6	0.3 J	<0.1	5	<0.6	<11	10	33	<0.1	<0.1	2	0.8	<0.6	NS	3	NS	NS	<0.2	0.2 J <0.2	<0.6
RW-20	11/13/2013	190	9	22	6	2	3	2	<0.5	5	0.3 J	100	53	<11	55	120	0.8	140	1300	170	5	NS	31	NS	NS	27	57 22	93
RW-22	11/13/2013	490	18	80	150	61	83	37	<0.5	120	4	290	2	<11	720	390		140	1100	1100	<0.5	NS	470	NS	NS	8.5	58 12	89
RW-23	11/13/2013	77	3	20	10	4		2	<0.5	7	0.3 J		2	<10	72	98	2	<0.1	0.6	170	<0.5	NS	43	NS	NS	0.9 J		16
RW-24	11/13/2013	110	11	32	20	7	10	5	<0.5	16	0.5 J		42	<10	110	79	2	82	720	190	4	NS	70	NS	NS	28	53 27	95
RW-25	11/13/2013	220	12	11	3	0.6	0.9	0.4	<mark>J</mark> <0.6	2	<0.1	120	75	<11	43	130	0.1 J	J 140	3400	170	15	NS	23	NS	NS	12	32 21	81

WELL ID	SAMPLE DATE	Acenaphthene I/bn	Acenaphthylene اروبر	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	الالمحمد (b)fluoranther	Denzo(k)fluoranther	2-Chlorophenol	Chrysene	Dibenz(a,h)anthrace	Dipenzofuran	2,4-Dimethylphenol	2,4-Dinitrophenol	Eluoranthene	Huorene الم	D 55 ☐ Indeno(1,2,3-cd)pyr	2-Methylnaphthaler	Naphthalene Naphthalene	Phenanthrene	Phenol Phenol	2-Picoline ا/ولر	Pyrene	σ-4/2	Total PAHs	Benzene hg/l	Ethylbenzene	Toluene Hg/l	کول کول کراenes (Total)
STAN	DARD	1200	0.1	9600	0.1	0.2	0.1	0.1	0.5	0.1	0.1	7.9	540	70	300	1300	0.1	36	20	0.1	300	NS	960	NS	NS	5	700	1000	10000
			T	P.	-				T	T.	T	T.	OF	F-SITE W	ELLS	P.	1					T							
SMW-58	12/4/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	0.6	<0.1	<0.5	NS	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.6
SMW-59	12/4/2013	25	0.5	0.3	J <0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	5	<0.5	<10	3	11	<0.1	<0.1	0.9	0.2 J	<0.5	NS	2	NS	NS	<0.2	<0.2	<0.2	<0.6
	2/5/2010	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<21	<1.0	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	9/27/2011	<0.1	<0.1	NS	<0.1	<0.1	0.2]		< 0.5	0.1	J <0.1	NS	< 0.5	<10	<0.1	NS	<0.1	NS	0.1	J NS	<0.5	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
0101/ CD	10/16/2012	<0.1	<0.1	0.1	J <0.1	<0.1	<0.1	<0.1	< 0.5	<0.1	<0.1	<0.5	< 0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.6
SMW-62	12/4/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	< 0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS 12.0	<0.1	NS	NS	< 0.2	<0.2	<0.2	<0.6
	9/23/2014	0.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.1 J	0.4 J	<0.1 <0.1	<0.1	2	0.3 J	<0.5	<2.0	<0.1	NS	3	< 0.2	<0.2	<0.2	<0.2
	9/24/2015 9/9/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5 <0.5	<0.1	<0.1	6 <0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	0.4 <0.1	J <0.1	<0.5	NS	<0.1	NS	0.4	< 0.2	<0.2	<0.2 <0.2	<0.2 <0.2
	2/5/2010	<0.1 210	<0.1 2 J	<0.1 NS	<0.1 <1.0	<0.1 <1.0	<0.1 <1.0	<0.1 NS	<1.0	<0.1 <1.0	<0.1 <1.0	NS	<0.5 <3.0	<10 <20	<0.1 20	<0.1 NS	<0.1 <1.0	<0.1 NS	470	<0.1 NS	<0.5 <1.0	<2.0 NS	<0.1 NS	NS NS	700	<0.2 2.4	<0.2 <0.2	<0.2 2.9	<0.2 5.1
	9/16/2010	200	2 J	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	20	NS	<1.0	NS	720	NS	<1.0	NS	NS	NS	942	2.4	2.9	<0.2	5
	4/12/2011	210	2 J	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	18	NS	<1.0	NS	730	NS	<1.0	NS	NS	NS	958	3.1	9.8	0.5 J	11
	9/27/2011	210	2	NS	0.8	<0.1	0.2]	NS NS	<0.5	0.5	<1.0	NS	<0.5	<10	27	NS	<0.1	NS	840	NS	<0.5	NS	NS	NS	1079.8	2.7	8.2	0.2 J	7.3
	4/1/2012	190	2	5	0.4 J	<0.1	<0.1	<0.1	<0.5	0.2	<0.1	6	<0.5	<10	20	79	<0.1	15	260	74	<0.5	<2.0	9	NS	657	1.9	2.6	<0.2	4.2 J
	10/16/2012	230	1	6	0.5 J	<0.1	0.1]		< 0.5	0.3	< 0.1	6	< 0.5	<10	26	120	<0.1	38	470	100	<0.5	<2.0	12	NS	965	2.9	5.1	0.2 J	6.2
SMW-64	12/5/2013	130	1	4	0.4 J	<0.1	<0.1	<0.1	< 0.5	0.2	< 0.1	11	< 0.5	<10	18	74	<0.1	1	89	50	<0.5	NS	9	NS	NS	1.1	0.7 J	<0.2	1.5
	4/14/2014	160	1	3	0.3 J	< 0.1	< 0.1	< 0.1	< 0.5	<0.1	<0.1	6	<0.5	<10	16	78	< 0.1	0.8	71	40	<0.5	<2.0	7	NS	376	1.1	2.5	0.2 J	
	9/23/2014	160	1	4	0.3 J	< 0.1	<0.1	<0.1	<0.5	0.1	< 0.1	9	<0.5	<10	21	88	<0.1	8	230	50	<0.5	<2.0	10	NS	564	0.9 J	6.1	0.3 J	6.4
	4/7/2015	130	1	3	0.2 J	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	8	<0.5	<10	14	73	<0.1	6	130	33	<0.5	NS	6	NS	390.2	0.8 J	2.6	<0.2	3.4
	9/24/2015	130	0.6	2	0.4 J	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	16	64	< 0.1	3	51	19	<0.5	NS	9	NS	292	0.3 J	1.6	<0.2	2.2
	9/9/2016	140	0.8	2	0.4 J	<0.1	<0.1	<0.1	<0.5	0.2	J <0.1	5	<0.5	<10	15	75	<0.1	8	30	25	<0.5	<2.0	7	NS	308.4	0.6 J	0.8 J	<0.2	1.7
	4/28/2017	130	0.9	2	0.3 J	<0.1	<0.1	<0.1	<0.1	0.1	J <0.1	3	<0.5	<11	13	73	<0.1	8	3	36	<0.5	<2.0	6	NS	NS	1.4	1.5	<0.2	3.1
	2/5/2010	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<20	5 J	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	9/17/2010	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	10	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	10	<0.2	<0.2	<0.2	<0.6
	4/13/2011	1 J	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	6	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	6	<0.2	<0.2	<0.2	<0.6
	9/27/2011	3	0.2 J	NS	0.5	0.1 J	0.2 J	NS	<0.5	<0.1	<0.1	NS	<0.5	<10	12	NS	<0.1	NS	<0.1	NS	<0.5	NS	NS	NS	15	<0.2	<0.2	<0.2	<0.6
	4/1/2012	6	0.1 J	0.8	0.9	0.2 J	0.4 J	0.2 J	<0.5	0.5) <0.1	<0.5	<0.5	<10	26	13	<0.1	<0.1	<0.1	0.1 J	<0.5	<2.0	12	NS	59	<0.2	<0.2	<0.2	<0.6
	10/16/2012	2	<0.1	0.1	J 0.3 J	<0.1	<0.1	<0.1	<0.5	0.1) <0.1	<0.5	<0.5	<10	10	4	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	4	NS	20	<0.2	<0.2	<0.2	<0.6
SMW-71	12/5/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.6
	4/15/2014	3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	2	<0.5	<10	<0.1	2	<0.1	3	37	1	<0.5	<2.0	<0.1	NS	43	0.2 J	0.3 J	0.3 J	1.2
	9/22/2014	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	0.2 J		0	<0.2	<0.2	<0.2	<0.2
	4/7/2015	2	<0.1	0.1	J <0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	0.8 J		<10	2	3	<0.1	0.9	9	0.7	<0.5	NS	0.9	NS	17.7	<0.2	<0.2	<0.2	<0.2
	9/24/2015	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	110	<0.5	<10	2	<0.1	<0.1	<0.1	0.6	<0.1	<0.5	NS	2	NS	4.6	<0.2	<0.2	<0.2	<0.2
	9/8/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	< 0.5	<11	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	0.9	NS	1.9	<0.2	<0.2	0.2 J	
	4/24/2017	1	<0.1	0.1		<0.1	<0.1	<0.1	< 0.5	<0.1	<0.1	<0.5	< 0.5	<10	6	2	<0.1	<0.1	<0.1	<0.1	<0.5	<2	4	ND	NS	<0.2	<0.2	<0.2	<0.2
	12/4/2013	25	0.6	2	2	0.7	0.9	0.4 J		1	<0.1	29	< 0.5	<10	9	24	0.3 J	-	120	13	<0.5	NS	6	NS	NS	0.2 J			3 J
SMW-72	9/9/2016	4	0.3 J	2	1	0.6	0.8	0.4 J		1	<0.1	65 D		<11	12 D			0.2 J		D 1	<0.6	<2.0	6 D		144.6	< 0.2	1.5	0.3 J	
	9/24/2015	14	0.6	4	3	2	2	0.8	<0.5	3	0.3 J	<0.5	<0.5	<10	22	86	0.8	0.6	1	3	<0.5	NS	13	NS	155.5	<0.2	4	0.2 J	0.8 J

WELL ID	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracen	Benzo(a)pyrene	Benzo(b)fluoranthe	Benzo(k)fluoranthe	2-Chlorophenol	Chrysene	Dibenz(a,h)anthrac	Dibenzofuran	2,4-Dimethylpheno	2,4-Dinitrophenol	Fluoranthene	Fluorene	Indeno(1,2,3-cd)py	2-Methylnaphthale	Naphthalene	Phenanthrene	Phenol	2-Picoline	Pyrene	2,4-D	Total PAHs	Benzene	Ethylbenzene	Toluene	Xylenes (Total)
		µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l
GROUNDWATE STAN	R PROTECTION DARD	1200	0.1	9600	0.1	0.2	0.1	0.1	0.5	0.1	0.1	7.9	540	70	300	1300	0.1	36	20	0.1	300	NS	960	NS	NS	5	700	1000	10000
	2/5/2010	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<21	<1.0	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	9/17/2010	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	<1.0	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	4/13/2011	<1.0	<1.0	NS	<1.0	1	J 2 J	NS	<1.0	1	J <1.0	NS	<3.0	<10	1 3	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	9/27/2011	<0.1	0.6	NS	1	2	3	NS	<0.5	1	0.3 J	NS	< 0.5	<10	1	NS	1	NS	<0.1	NS	<0.5	NS	NS	NS	9.6	<0.2	<0.2	<0.2	<0.6
	4/1/2012	<0.1	0.2 J	0.1	0.6	0.8	1	0.5 J	<0.5	0.8	0.1 J	<0.5	< 0.5	<10	0.6	<0.1	0.4 J	<0.1	<0.1	0.1 J	<0.5	<2.0	0.5	NS	4	<0.2	<0.2	<0.2	<0.6
	10/16/2012	<0.1	0.3 J	0.2	J 0.8	0.9	2	0.6	<0.5	0.8	0.1 J	<0.5	<0.5	<10	0.7	<0.1	0.5 J	<0.1	<0.1	0.1 J	<0.5	<2.0	0.5	NS	6	<0.2	<0.2	<0.2	<0.6
SMW-73	12/4/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	< 0.5	<10	<0.1	<0.1	<0.1	<0.1	0.2 J	<0.1	<0.5	NS	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.6
	4/15/2014	2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	0.9	J <0.5	<10	<0.1	0.8	<0.1	0.6	8	0.7	<0.5	<2.0	<0.1	NS	12	<0.2	<0.2	<0.2	<0.2
	9/22/2014	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	< 0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 J	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.2
	4/20/2015	2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	2	< 0.5	<10	<0.1	1	<0.1	2	24	1	<0.5	NS	<0.1	NS	28	<0.5	<0.2	<0.5	<0.5
	9/24/2015	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	0.1 J	<0.1	<0.5	NS	<0.1	NS	0.1	<0.2	<0.2	<0.2	<0.2
	9/8/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	0.2 J	J <0.2
	4/25/2017	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.2
	2/5/2010	14	<1.0	NS	1 J	2	J 3 J	NS	<1.0	3	J <1.0	NS	<3.0	<20	3 3	NS	1 J	NS	5 J	NS	<1.0	NS	NS	NS	14	<0.2	<0.2	<0.2	<0.6
	9/17/2010	2 J	1 J	NS	4 J	5	J 8	NS	<1.0	7	<1.0	NS	<3.0	<10	<1.0	NS	3 J	NS	<1.0	NS	<1.0	NS	NS	NS	15	<0.2	<0.2	<0.2	<0.5
	4/13/2011	10	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	2 3	NS	<1.0	NS	2 J	NS	<1.0	NS	NS	NS	10	<0.2	<0.2	<0.2	<0.6
	9/27/2011	22	0.6	NS	0.7	0.9	1	NS	<0.5	1	0.1 J	NS	<0.5	<10	8	NS	0.5 J	NS	4	NS	<0.5	NS	NS	NS	38.2	<0.2	<0.2	<0.2	<0.6
	4/1/2012	26	0.8	2	2	3	3	2	<0.5	3	0.5 J	9	<0.5	<10	7	19	2	0.3 J	4	2	<0.5	<2.0	2	NS	78	<0.2	<0.2	<0.2	<0.6
	10/16/2012	33	2	3	6	7	11	4	<0.5	9	0.8	14	<0.5	<10	11	27	4	0.4 J	4	4	<0.5	<2.0	5	NS	127	<0.2	<0.2	<0.2	<0.6
SMW-74	12/5/2013	0.5 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	0.8	J <0.5	<10	0.1	0.6	<0.1	<0.1	<0.1	0.1 J	<0.5	NS	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.6
	4/15/2014	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	1	<0.1	<0.1	1	<0.1	<0.5	<2.0	<0.1	NS	2	<0.2	<0.2	<0.2	<0.2
	9/22/2014	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.2
	4/8/2015	0.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	0.4 J	<0.1	0.5	8	0.2 J	<0.5	NS	<0.1	NS	9.5	<0.2	<0.2	<0.2	<0.2
	9/24/2015	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	0.6	<0.1	<0.5	NS	<0.1	NS	0.6	<0.2	<0.2	<0.2	<0.2
	9/8/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	0.2 J	J <0.2
	4/24/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	ND	ND	<0.2	<0.2	<0.2	<0.2
	2/5/2010	21	<1.0	NS	2 J	<1.0	<1.0	NS	<1.0	1 .	J <1.0	NS	<3.0	<21	60	NS	<1.0	NS	11	NS	<1.0	NS	NS	NS	92	<0.2	<0.2	<0.2	<0.6
SMW-75	4/13/2011	12	<1.0	NS	2 J	<1.0	<1.0	NS	<1.0	1	J <1.0	NS	<3.0	<10	43	NS	<1.0	NS	2 J	NS	<1.0	NS	NS	NS	55	<0.2	<0.2	<0.2	<0.6
	12/5/2013	2	<0.1				<0.1						< 0.5		20		<0.1		0.1 J				6	NS	NS	<0.2	<0.2	<0.2	<0.6
	4/7/2015	2	<0.1				J 0.2 J		< 0.5		J <0.1	< 0.5	< 0.5	<10	3	0.3 J		<0.1	<0.1	0.1 J		NS	1	NS	7.2	<0.2	<0.2	<0.2	<0.3
CMW/ 77	10/16/2016		<0.11	<0.11			<0.11	<0.11	<0.54	<0.11	< 0.11			<1.0	0.69		<0.11		0.14 J			<0.22			2.55	0.3 J		0.4 J	
SMW-77	1/31/2017	3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.6	<0.1	<0.1	<0.6	<0.6	<13	1	0.3 J		<0.1		<0.1	<0.6	<3.0	0.7	NS	NS	<0.2	<0.2	<0.2	<0.2
	4/26/2017	1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.5	<0.1	<0.1	< 0.5	< 0.5	<11	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.5	<2.0	< 0.1	NS	NS 6.62	< 0.2	< 0.2	<0.2	< 0.2
CMW/ 70	10/16/2016	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.51	<0.1	<0.1	0.9	< 0.51	<1.0	0.15]		<0.1	0.28 J	0.54	1.6	< 0.51	<2.0	0.29 J		6.62		<0.2	1 J	
SMW-78	1/31/2017	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.6	< 0.1	<0.1	<0.6	<0.6	<11	0.1	0.1	0.1	0.1	0.1	0.1	<0.6	<2.0	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.2
SMW-79	4/24/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1 ELL DRY	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.2

WELL ID	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranther	: Benzo(k)fluoranther	: 2-Chlorophenol	Chrysene	. Dibenz(a,h)anthrace	Dibenzofuran	2,4-Dimethylphenol	2,4-Dinitrophenol	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyr	2-Methylnaphthalen	Naphthalene	Phenanthrene	Phenol	2-Picoline	Pyrene	2,4-D	Total PAHs	Benzene	: Ethylbenzene	Toluene	Xylenes (Total)
	ER PROTECTION	μg/l 1200	μg/l 0.1	μg/l 9600	μg/l 0.1	μg/l 0.2	μg/l 0.1	μg/l 0.1	μg/l 0.5	μg/l 0.1	μg/l 0.1	μg/l 7.9	μg/l 540	μg/l 70	μg/l 300	μg/l 1300	μg/l 0.1	μg/l 36	μg/l 20	μg/l 0.1	μg/l 300	μg/l NS	μg/l 960	μg/l NS	μg/l NS	μg/l 5	μg/l 700	μg/l 1000	μg/l 10000
	11/21/2016	370	18	14	0.5	<0.1	0.1 J	< 0.1	<0.5	0.4	J <0.1	270	2	<1.0	23	230	<0.1	630	11000	210	0.5	J <2.0	11	NS	12778.6	10	94	47	310
SMW-80	12/16/2016	740	34	140	240	98	140	57	<0.5	170	9	630	3	<1.0	1200	750	28	740	8200	1700	<0.5	<2.0	650	NS	14156	9.3	92	45	300
3444-80	2/2/2017	310	14	9	0.5	0.1 J	0.2 J) <0.1	<0.5	0.4	J <0.1	220	<0.5	<10	21	200	<0.1	520	9700	190	<0.5	<2.0	10	NS	NS	8	78	39	270
	4/27/2017	200	10	9	0.9	0.3 J	0.5 J	<mark>J 0.2 J</mark>	<0.5	0.7	<0.1	140	1	<11	17	130	<0.1	<mark>240</mark>	4300	130	<0.5	<2.0	9	NS	NS	3.7	41	18	150
	10/16/2016	320	3	61	68	23	33	13	<0.5	47	2	220	<0.5	<1.0	400	350	6	43	4	950	<0.5	<2.0	240	NS	2520	<0.2	0.7 J	<0.2	2.7 J
	2/1/2017	18	0.2 J	2	0.8	0.2 J			<0.5	0.7	<0.1	5	<0.5	<10	11	19	<0.1	<0.1	<0.1	25	<0.5	<2	6	NS	NS	<0.2	<0.2	<0.2	0.3 J
SMW-81	2/1/2017 MS	66	45	51	50	46	49	48	39	51	41	54	25	33	63	68	41	44	42	74	19	34	53	NS	NS	23	23	23	71
	2/1/2017 MSD	66	47	52	53 0.3	48 <0.1	52	50	43	53	44	54	28	65	64 8	68	44	45	44	71	22	38	54	NS NS	NS NS	23	23	23	71
	4/28/2017 10/16/2016	26 470	0.4 J 1.9	1 22	9.8	2.6	0.2 5.4	<0.1	<0.5 <0.52	0.4 7.2	J <0.1 0.32 J	12 290	<0.5 <0.52	<11 <1.0	83	21 300	<0.1	<0.1 470	<0.1 3900	390	<0.5 <0.52	<2.0	3 47	NS	5242.62	<0.2	0.3 J 13	0.3 J 2.6 J	2 38
SMW-82	2/2/2017	260	1.5	9	0.5	0.2 J		0.2 J	<0.5	0.5	J <0.1	160	<0.52	<11	16	160	<0.1	300	2,700	160	< 0.52	<2.0	8	NS	NS	0.2 J		2.0 5	39
	4/24/2016	300	2	10	2	0.3 J		J 0.4 J	< 0.5	0.9	<0.1	180	< 0.5	<11	21	170	0.1		3,300	160	< 0.5	<2.0	<0.1	NS	NS	0.3		2.2	38
	11/16/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<1.0	0.2 J	<0.1	<0.1	<0.1	<0.1	0.2 J	<0.5	<2.0	0.3 J	NS	1.4	<0.2	<0.2	<0.2	<0.2
SMW-83	2/1/2017	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.6	<0.1	<0.1	<0.6	<0.6	<12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.6	<2.0	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.2
	4/24/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.2
	11/16/2016	410	3	17	2	0.5	0.7	0.3 J	<0.5	1	<0.1	290	1	<1.0	28	230	0.1 J	540	5000	240	1	<2.0	14	NS	6488.5	0.5 J	20	5	82
SMW-84	2/2/2017	340	2	27	20	9	12	5	<0.5	16	0.8	250	<0.5	<11	98	220	3	350	3,300	350	<0.5	<2.0	60	NS	NS	0.6 J	16	4.6	61
	4/27/2017	330	5	33	24	10	13	6	<0.5	19	1	220	<0.5	<10	120	220	4	230	1,700	350	<0.5	<2.0	75	NS	NS	0.2 J	8.3	1.8	30
	11/16/2016	37	1 J	5	J 6	6	9	4 J	<5.0	5	<1.0	24	<5.0	<1.00	42	32	3]	<1.0	<1.0	32	<5.0	<2.0	26	NS	221	<0.2	<0.2	<0.2	<0.2
SMW-85	2/1/2017	<0.1	<0.1	<0.1	0.1	J 0.2 J		J 0.2 J	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.2 J	<0.1	0.1]		<0.1	<0.1	< 0.5	<2.0	0.1 J	NS	NS	< 0.2	<0.2	<0.2	<0.2
	4/27/2017 12/28/2016	<0.1	<0.1	<0.1	0.1	J 0.3 J 0.5 J	0.3]		<0.5	0.1	J <0.1	<0.5	<0.5	<10	0.3 J	<0.1 62	0.1 3		<0.1	<0.1	<0.5	<2.0	<0.1	NS NS	NS 233.9	<0.2	<0.2	<0.2	<0.2
SMW-86	2/1/2017	88	<0.1	<0.1	<0.1	<0.1	0.7 <0.1	0.4 J <0.1	<0.5 <0.5	<0.1	<0.1	45 <0.5	<0.5 <0.5	<1.0	35 0.3 J	<0.1	0.2 J	0.5 J <0.1	<0.1	13 <0.1	<0.5 <0.5	<2.0	18 <0.1	NS	233.9 NS	<0.2	0.3 J <0.2	<0.2 <0.2	0.8 <0.2
	4/24/2017	0.3 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<11	0.5 5	<0.1	<0.1	<0.1	0.3	J <0.1	< 0.5	<2.0	0.1 J	NS	NS	<0.2	<0.2	<0.2	<0.2
	12/28/2016	550	7	87	97	36	50	20	<0.5	64	4	440	<0.5	<10.0	470	470	12	460	5400	1000	< 0.5	<2.0	280	NS	8547	<0.2	14	1.3	49
SMW-87	2/2/2017	81	0.7	8	1	0.2 J	0.4]	J 0.1 J	< 0.5	0.7	<0.1	58	<0.5	<10	25	68	<0.1	30	98	100	< 0.5	<2.0	13	NS	NS	<0.2	0.3 J		2.9
	4/27/2017	53	1	8	8	3	4	2	<0.5	5	0.5 J	38	<0.5	<10	47	45	1	14	150	81	<0.5	<2.0	29	NS	NS	<0.2	<0.2	<0.2	1.6
	4/13/2011														NAPL IN W	ell, no sai	MPLE												
	10/16/2012														NAPL IN W	ell, no sai	MPLE												
	11/13/2013														NAPL IN W	•													
RW-21	4/15/2014														NAPL IN W	•													
	9/23/2014													1	NAPL IN W									[
	4/20/2015	490	12	67	110	48	68	27	<0.5	77	5	260	3	<10	490	340	18	300	2300	550	7	NS	310	NS	4912	6	57	16	350
	9/23/2015		-	4.5	5	-			0.5	_		100			1	L IN WELL					-	2.0		NG	2 500	6.0			
	9/9/2016 2/4/2010	230 <1.0	5	15 NS	<1.0	2 <1.0	3 <1.0	1 NS	<0.5 <1.0	3 <1.0	0.2 J	130 NS	6 <3.0	<11 <21	40 1 J	130 NS	0.7 <1.0	220 NS	2,000 <1.0	140 NS	7 <1.0	<2.0 NS	23 NS	NS NS	2,598 0	6.8 <0.2	27 <0.2	9.4 <0.2	140 <0.6
	9/17/2010	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<3.0	<10	5 3		<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	< 0.2	<0.6
	4/13/2011	<1.0	<1.0	NS	<1.0	<1.0	1]	NS NS	<1.0	1.0	<1.0 J <1.0	NS	<3.0	<10	<1.0	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	10/16/2012												.5.0			OT SAMPLE													
	4/15/2014															ACCESS													
WLMW-2	9/23/2014	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.2
	4/7/2015	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	_	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS	<0.1	NS	0.1	<0.2	<0.2	<0.2	<0.4
	9/23/2015	<0.1	0.3 J	0.2	J 2	3	4	2	<0.5	2	0.4 J	<0.5	<0.5	<10	2	<0.1	1	<0.1	<0.1	0.3 J	<0.5	NS	1	NS	18.2	<0.2	<0.2	<0.2	<0.2
	9/6/2016	<0.1	<0.1	<0.1	0.2	J 0.3 J	0.4	J 0.1 J	<0.5	0.2	J <0.1	<0.5	<0.5	<10	0.2 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	0.1 J	NS	1.5	<0.2	<0.2	<0.2	<0.2
	4/26/2017			1	<0.1	< 0.1	<0.1	<0.1	<0.5	< 0.1	<0.1	<0.5	1		1		1	1	1		< 0.5	<2.0	< 0.1	NS	NS	<0.2	<0.2	<0.2	<0.2

WELL ID	SAMPLE DATE	B Acenaphthene	S Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranther	Benzo(k)fluoranther	2-Chlorophenol	Chrysene	5 Dibenz(a,h)anthrace	Dibenzofuran	2,4-Dimethylphenol	2,4-Dinitrophenol	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyr	5 2-Methylnaphthalen	Naphthalene	Phenanthrene	Phenol	2-Picoline	Pyrene	2,4-D	Total PAHs	Benzene	Ethylbenzene	Toluene	Xylenes (Total)
	R PROTECTION	μg/l 1200	μg/l 0.1	μg/l 9600	μg/l 0.1	μg/l 0.2	μg/l 0.1	μg/l 0.1	μg/l 0.5	μg/l 0.1	μg/l 0.1	μg/l 7.9	μg/l 540	μg/l 70	μg/l 300	μg/l 1300	μg/l 0.1	μg/l 36	μg/l 20	μg/l 0.1	μg/l 300	μg/l NS	μg/l 960	μg/l NS	μg/l NS	μg/l 5	μg/l 700	μg/l 1000	μg/l 10000
51741	2/4/2010	390	8	NS	76	34	55	NS	<1	39	4 J	NS	<3.0	<20	480	NS	13	NS	370	NS	<1.0	NS	NS	NS	1465	<0.2	0.3 J	0.4 J	2.5
	9/17/2010	550		115				113	~1			115	<5.0		NAPL IN WI	-		113	570	115	<1.0	115	113	113	1105	<0.2	0.5 5	0.4 5	2.5
	4/13/2011														NAPL IN WI														
	4/1/2012														NAPL IN WI	ELL, NO SA	MPLE												
	10/16/2012														WELL N	OT SAMPLE	Đ												
WLMW-3	4/15/2014	WELL NOT SAMPLED NO ACCESS NAPL IN WELL, NO SAMPLE DNAPL IN WELL																											
	9/23/2014	NO ACCESS NAPL IN WELL, NO SAMPLE DNAPL IN WELL ONAPL IN WELL DNAPL IN WELL																											
	4/7/2015	NAPL IN WELL, NO SAMPLE DNAPL IN WELL																											
	9/23/2015	NAPL IN WELL, NO SAMPLE DNAPL IN WELL DNAPL IN WELL NO SAMPLE NAPL IN WELL, NO SAMPLE NAPL IN WELL, NO SAMPLE																											
	9/6/2016														NAPL IN WI	ELL, NO SA	MPLE												
	9/17/2010	<1.0	<1.0	NS	1)	J 1 J	2]	NS	<1.0	1 J	<1.0	NS	<1.0	<10	1 J	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	4/13/2011	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<1.0	<1.0	NS	<1.0	<10	<1.0	NS	<1.0	NS	<1.0	NS	<1.0	NS	NS	NS	0	<0.2	<0.2	<0.2	<0.6
	4/1/2012	2013 3 3 3 3 3 3 4 3 4 3 4 3 4														<0.2	14	<0.6											
	10/16/2012														WELL N	ot sample	ED												
WLMW-4	4/15/2014														NO	ACCESS													
WENW-4	9/23/2014	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.2
	4/7/2015	<0.1	<0.1	<0.1	<0.1	<0.1	<mark>0.2</mark> J	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.1 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS	0.1 J	NS	0.4	<0.2	<0.2	<0.2	<0.5
	9/23/2015	<0.1	<0.1	<0.1	<0.1	0.2 J	0.3	0.1 J	<0.5	0.1 J	<0.1	<0.5	<0.5	<10	0.2 J	<0.1	0.2	<0.1	<0.1	<0.1	<0.5	NS	0.2 J	NS	1.3	<0.2	<0.2	<0.2	<0.2
	9/6/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.2
	4/24/2017	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.2
	10/16/2012						1		1	-	1	1	1		WELL N	ot sample	Ð				1			1				1	
	12/4/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS	<0.1	NS	NS	<0.2	<0.2	<0.2	<0.6
	4/15/2014						1		1	1			1		NO	ACCESS					-			1				1	
WLMW-11	9/22/2014	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	<0.2	<0.2
	4/7/2015	0.4	J <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	0.2	J <0.1	0.4 J	5	0.1 J	<0.5	NS	<0.1	NS	5.7	<0.2	<0.2	<0.2	<0.2
	9/23/2015	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 J	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS	<0.1	NS	0.1	<0.2	<0.2	<0.2	<0.2
	9/9/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	0	<0.2	<0.2	0.5 J	
	4/24/2017	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2.0	<0.1	NS	S	<0.2	<0.2	<0.2	<0.2

Notes:

GWPS = Groundwater Protection Standard

DNAPL = Well contained dense non-aqueous phase liquid and was not sampled.

< = Compound not detected, Method Detection Limit reported.

 ${\tt J}={\tt Estimated}$ value greater than the method detection limit and less than the limit of quantification.

V = Indicates that the analyte was detected in both the sample and the associated method blank. Note: the value in the blank shall not

be subtracted from associated samples.

P = Concentration difference between the primary and confirmation column >40%. The lower result is reported.

D = Field duplicate imprecision. Result is considered estimated.

NS = Analyte not included

µg/I = micrograms per liter

		-	a		ene	a	ther	her	_		ace		ē	0			pyr	lene										
		ohthene	rthylene	acene	anthrao)pyrene	luorant	luorant	ophenol	sene	h)anthr	ofuran	thylpher	rophene	nthene	rene	.2,3-cd)	aphthal	halene	threne	lons	oline	ene	2	zene	enzene	əuər	t (Total)
WELL ID	SAMPLE DATE	cenat	enap	Anthr	zo(a)	e)ozu:	(q)oz	zo(k)	- - - -	Chr	enz(a,	Dibenz	Dime	Dinit	luora	Fluo	ano(1	ethylr	Vapht	henai	Phe	2-Pic	Ā	2,4-	Ben	thylb	Tol	/lenee
		۷	Ac		Ben	B	Ben:	Ben	2		Dibe	-	2,4-	2,4	L		Inde	2-Me	-	•								×
GROUNDWATER I		μg/l 1200	μg/l 0.1	μg/l 9600	μg/l 0.1	μg/l 0.2	μg/l 0.1	μg/l 0.1	μg/l 0.5	μg/l 0.1	μg/l 0.1	μg/l 7.9	μg/l 540	μg/l 70	μg/l 300	μg/l 1300	μg/l 0.1	μg/l 36	μg/l 20	μg/l 0.1	μg/l 300	μg/l NS	μg/l 960	µg/l NS	μg/l 5	μg/l 700	μg/l 1000	μg/l 10000
STANDA	RD							0.12	0.0				SECONDARY			1000										,		
	9/16/2010	<1	<1	NS	<1	<1	<1	NS	<1	<1	<1	NS	<3	<10	<1	NS	<1	NS	<1	NS	<1	NS	NS	NS	<0.2	<0.2	0.3 J	<0.6
	9/28/2011	<0.1	<0.1	NS	<0.1	<0.1	<0.1	NS	<0.5	<0.1	<0.1	NS	<0.5	<10	0.1	J NS	<0.1	NS	0.1 J	NS	<0.5	NS	NS	NS	<0.2	<0.2	<0.2	<0.6
	10/16/2012	0.2 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.2	J 0.2 J	<0.1	<0.1	<0.1	0.3 J	<0.5	<2	0.1	NS	<0.2	<0.2	<0.2	<0.6
BMW-1	12/4/2013	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS	<0.1	NS	<0.2	<0.2	0.2 J	<0.6
	9/23/2014	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2	<0.1	NS	<0.2	<0.2	<0.2	<0.2
	9/23/2015	2	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.5	<0.1	<0.1	1	<0.5	<10	0.1	J 1	<0.1	0.2 J	0.9	1	<0.5	NS	<0.1	NS	<0.2	<0.2	<0.2	<0.2
	9/8/2016	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2	<0.1	NS	<0.2	<0.2	0 3	<0.2
	9/16/2010	66	4 J	NS	33	19	30	NS	<1	28	3	J NS	<3	<11	100	NS	9	NS	740	NS	<1	NS	NS	NS	7.9	25	12	47
	9/28/2011	17	2	NS	6	5	7	NS	<0.5	6	1	NS	<0.5	<10	24	NS	3	NS	1	NS	<0.5	NS	NS	NS	1.3	4.5	0.3 J	6.1
	9/28/2011	4	0.3 J	0.9	0.2	J 0.1 J	0.1 J	<0.1	<0.5	0.2 J	<0.1	3	<0.5	<10	3	3	<0.1	0.8	4	7	<0.5	<2	1	NS	1.7	6.2	0.5 J	8.3
BMW-2	9/22/2014	3	0.3 J	0.2 J	0.1		0.3 J	0.2	<0.5	0.2 J	<0.1	1	<0.5	<10	0.9	2	0.2 J	<0.1	0.9	0.4 J	<0.5	<2	0.6	NS	0.5	3.1	<0.2	4.4
	9/23/2015	8	0.2 J	0.3 J 0.7	0.1	J <0.1	<0.1	<0.1	<0.5	0.2 J	<0.1	4	<0.5	<10	4	7	<0.1	0.3 J 0.4 J	4	6 5	<0.5	NS r2	2	NS	0.4 J	2.2	<0.2	3.3
	9/6/2016 9/6/2016	7	0.1 J 0.1 J	0.7	0.3	<0.1 <0.1	0.2 J 0.2 J	<0.1 <0.1	<0.5	0.2 J 0.3 J	<0.1 <0.1	5	<0.5 <540	<10 <70	5	D 6	<0.1	0.4 J 3	<0.1	5	<0.5 < 300	<2	3	NS NS	0.5 J 0.5 J	5.1 5.4	0.2 J 0.3 J	6.1 6.5
	9/16/2010	<1	<1	NS	<1	<1	<1	NS	<1	<1	<1	NS	<3	<10	<1	NS	<1	NS	<1	NS	<1	NS	NS	NS	0.2	<.2	<0.2	<0.6
	9/28/2011	<0.1	<0.1	NS	<0.1	<0.1	<0.1	NS	<0.5	<0.1	<0.1	NS	<0.5	<10	<0.1	NS	<0.1	NS	0.3 J	NS	<0.5	NS	NS	NS	<0.2	<0.2	<0.2	<0.6
	10/16/2012	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<11	<0.1	<0.1	<0.1	<0.1	0.2 J	<0.1	<0.5	<2	<0.1	NS	<0.2	<0.2	<0.2	<0.6
BMW-4	12/5/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	0.3 J	<0.1	<0.5	NS	<0.1	NS	<0.2	<0.2	<0.2	<0.6
	9/23/2014	0.4 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	0.2 3		<0.1	0.4 J	<0.1	<0.5	<2	<0.1	NS	<0.2	<0.2	<0.2	<0.2
	9/23/2015	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS	<0.1	NS	<0.2	<0.2	<0.2	<0.2
	9/8/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2	<0.1	NS	<0.2	<0.2	1 J	<0.2
	9/17/2010	<1	<1	NS	<1	<1	<1	NS	<1	<1	<1	NS	<3	<10	<1	NS	<1	NS	<1	NS	<1	NS	NS	NS	<0.2	<0.2	<0.2	<0.6
	9/27/2011	<0.1	<0.1	NS	<0.1	<0.1	<0.1	NS	<0.5	<0.1	<0.1	NS	<0.5	<10	<0.1	NS	<0.1	NS	0.1 J	NS	<0.5	NS	NS	NS	<0.2	<0.2	<0.2	<0.6
	10/17/2012	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	0.2	J 0.1 J	J <0.1	<0.1	0.1 J	<0.1	<0.5	<2	0.1	NS	<0.2	<0.2	<0.2	<0.6
BMW-9	12/4/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS	<0.1	NS	<0.2	<0.2	<0.2	<0.6
	9/23/2014	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	0.1 J	<0.1	<0.1	0.1 J	0.5 J	<0.5	<2	<0.1	NS	<0.2	<0.2	<0.2	<0.2
	9/23/2015	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS	<0.1	NS	<0.2	<0.2	<0.2	<0.2
	9/6/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2	<0.1	NS	<0.2	<0.2	<0.2	<0.2
	9/17/2010	<1	<1	NS	<1	<1	<1	NS	<1	<1	<1	NS	<4	<12	<1	NS	<1	NS	<1	NS	<1	NS	NS	NS	<0.2	<0.2	<0.2	<0.6
	9/28/2011	0.1 J	<0.1	NS	<0.1	<0.1	<0.1	NS	<0.5	<0.1	<0.1	NS	<0.5	<10	<0.1	NS	<0.1	NS	<0.1	NS	<0.5	NS	NS	NS	0.3	<0.2	<0.2	<0.6
	10/16/2012	0.9	<0.1	0.1 J	<0.1	0.1 J	<0.1	<0.1	<0.5	0.2 J	<0.1	0.7 J	<0.5	<11	0.7	0.6	<0.1	1	25	1	<0.5	<2	0.4	NS	2.6	0.6 J	2.2	2.2
BMW-10R	12/4/2013	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	0.3 J	0.2 J	<0.5	NS	<0.1	NS	0.3	<0.2	<0.2	<0.6
	9/23/2014	57	0.8	1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	30	13	<10	0.6	28	<0.1	47	920	14	<0.5	<2	0.4	NS	<0.2	0.2 J	<0.2	<0.2
	9/23/2015	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NS	<0.1	NS	<0.2	<0.2	<0.2	<0.2
BMW-13-80'	9/8/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2	<0.1	NS	<0.2	<0.2	0.3 J	<0.2
BMW-13-80 BMW-13-90'	09/16/16	0.4 J 93	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1 <0.1	<0.5 91	1.0 6	<10.0 <10.0	0.1 4		<0.1	1.0 330	58 6400	0.6 54	3.0 <0.5	<2.0 5.0 J	0.1 J 2	NS	1.9 180	1.0 73	2.9 190	3.3 290
BMW-13-90 BMW-13-150'	10/16/16	58	3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	57	8	<11.0	3	41 26	<0.1	200	4,000		<0.5	5.0 J	2	NS	160	51	190	290
BMW-13-150 BMW-13-175'	10/16/16	48	2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	47	6	<10.0	2	28	<0.1	160	3,400	36 27	<0.5	5.0 J	1	NS	150	42	130	170
DPW-13-173	1/31/2017	63	2	4	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	55	7	12 J	1	22	<0.1	220	4,200	31	3 3	<2	0.5 J		160	74	130	280
BMW-13-90'	4/27/2017	42	2	3	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	37	12	<11	0.5		<0.1	150	3,100	20	3	<2	0.3 J		160	61	160	240
BMW-14-107.5'	10/16/16	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.54	<0.11	<0.11	<0.54	<0.54	<11.0	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.54	<2.2	<0.11	NS	0.2 J	<0.2	0.4 J	<0.2
2.111 14-10/.5																												
BMW-14 -107.5'	1/31/2017	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<2	<0.1	NS	0.4 J	<0.2	0.7 J	
	4/27/2017	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.5	<10	<0.1	<0.1	<0.1	<0.1	0.3 J	<0.1	<0.5	<2	<0.1	NS	0.4 J	<0.2	0.6 J	0.3 J

 Notes:

 GWPS = Groundwater Protection Standard

 DNAPL = Well contained dense non-aqueous phase liquid and was not sampled.

 < = Compound not detected, Method Detection Limit reported.</td>

 J = Estimated value greater than the method detection limit and less than the limit of quantification.

 P = Concentration difference between the primary and confirmation column >40%. The lower result is reported.

 NS = Analyte not included

 μg/l = micrograms per liter

Yellow shading indicates 1x-10x GWPS Orange indicates 10x-100x GWPS Red indicates >100x GWPS

DRAFT

MEASUREMENT DATES:

4/24/2017 (SFZ, TFZ, RW) and 4/25/2017 (UFZ monitoring wells)

PERSONNEL: MEASUREMENT METHODS: Jon McKinney (JM) and Max Hoffman (MH) Environmental Works, Inc. WL and NAPL presence: Interface probe (IM-1 for clean wells, IM-3 for recovery and NAPL wells, IM-5 for wells with historically higher dissolved phase concentrations). NAPL gauging conducted using disposable equipment.

	AS INS	TALLED				AS MEASURED ON THIS DATE			
WELL NUMBER	ZONE	TOP OF CASING ELEVATION	AS BUILT TOTAL DEPTH	DEPTH TO WATER	MEASURED TOTAL WELL DEPTH ¹	NAPL PRESENT?	NAPL THICKNESS	WELL BOTTOM CONDITION	COMMENTS
-	-	Feet AMSL	Feet	Feet below TOC	Feet below TOC	LNAPL/DNAPL	Feet	Soft/Hard	·
SMW-1	Upper	1299.36	26.63	5.21					
SMW-3	Upper	1286.09	27.18	7.84		DNAPL	TRACE		
SMW-11B	Upper	1293.92	15.00	7.23					
SMW-12C	Upper	1292.91	42.07	10.51		DNAPL	3.7'		
SMW-13	Upper	1289.85	15.29	9.11					
SMW-14	Upper	1281.54	15.26	4.01					
SMW-15	Upper	1282.81	19.10	10.08		NO			
SMW-16	Upper	1289.96	15.22	6.72					
SMW-17	Upper	1296.96	18.90	5.65	19.08	NO		HARD	
SMW-18	Upper	1301.51	20.26	3.71					
SMW-19	Upper	1290.07	16.29	3.65		DNAPL	0.5'		
SMW-20	Upper	1304.23	23.32	7.55		DNAPL	TRACE		
SMW-21	Upper	1305.88	19.07	7.78		DNAPL	0.6'		
SMW-22R	Upper	1298.46	16.80	4.35	16.74	NO		HARD	
SMW-24	Upper	1295.77	14.81	3.04					
SMW-25	Upper	1304.62	27.64	7.53					
SMW-26	Upper	1304.24	24.54	6.31					
SMW-27	Upper	1303.50	13.92	9.22					
SMW-28	Upper	1304.95	27.55	8.03					
SMW-30	Upper	1302.38	22.68	5.28	22.3	NO		HARD	
SMW-58	Upper	1255.72	14.15	11.00					
SMW-59	Upper	1293.76	14.59	1.36					Vault was full of water w/ pvc slip cap instead of J-plug
SMW-60	Upper	1288.82	34.74	2.79					
SMW-62	Upper	1296.25	17.96	2.30					
SMW-64	Upper	1292.87	21.89	3.03	21.49	NO		SOFT	
SMW-71	Upper	1254.77	7.41	1.01	7.43	NO		HARD	
SMW-72	Upper	1257.33	43.39	36.85					
SMW-73	Upper	1240.27	33.89	31.64	33.9	NO		UNABLE TO DETERMINE	
SMW-74	Upper	1268.37	19.86	1.91	19.9	NO		UNABLE TO DETERMINE	
SMW-75	Upper	1273.45	24.81	1.47					
SMW-76	Upper	1306.13	27.65	5.84	27.6	NO		SOFT	
SMW-77	Upper	1294.08	39.60	8.87	39.5	NO		SOFT	
SMW-78	Upper	1294.91	40.90	9.36	40.9	NO		UNABLE TO DETERMINE	
SMW-79	Upper	1294.70		DRY	24.8	NO		HARD	
SMW-80	Upper	1279.41	28.30	4.16	28.3	NO		HARD	
SMW-81	Upper	1274.50	27.37	5.12	27.3	NO		SOFT	
SMW-82	Upper	1262.59	18.49	1.89	17.5	NO		HARD	
5MW-82	upper	1262.59	18.49	1.89	17.5	NU		HAKD	

MEASONEMENT BATES.		4/24/2017 (5/2) //2/ (6/2)	Ind 4/23/2017 (OTE INDINIO			_			
PERSONNEL:		Jon McKinney (JM) and Ma	ix Hoffman (MH) Environm	ental Works, Inc.					
MEASUREMENT METHODS:		WL and NAPL presence: Int concentrations). NAPL gauge			and NAPL wells, IM-5 for well	-			
	AS IN	STALLED				AS MEASURED ON THIS DATE			
WELL NUMBER	ZONE TOP OF CASING ELEVA		F CASING ELEVATION AS BUILT TOTAL DEPTH		DEPTH TO WATER MEASURED TOTAL WELL DEPTH ¹		NAPL PRESENT? NAPL THICKNESS		COMMENTS
-	-	Feet AMSL	Feet	Feet below TOC	Feet below TOC	LNAPL/DNAPL	Feet	Soft/Hard	-
SMW-83	Upper	1287.81	33.07	5.09	33.1	NO		UNABLE TO DETERMINE	
SMW-84	Upper	1260.92	54.25	40.28	54.2	NO		UNABLE TO DETERMINE	trace sheen in purge water
SMW-85	Upper	1254.60	56.70	34.02	56.4	NO		UNABLE TO DETERMINE	silt on probe
SMW-86	Upper	1274.73	28.74	5.63	28.5	NO		HARD	
SMW-87	Upper	1287.57	37.40	16.63	37.5	NO		UNABLE TO DETERMINE	trace sheen in purge water
SLMW-6	Upper	1325.71	29.08	7.62					
OP-1	Upper	1297.03	13.92	10.27		NO			
OP-2	Upper	1298.42	17.69	10.42		NO			
OP-3	Upper	1297.17	17.95	13.21		DNAPL	TRACE		

MEASUREMENT DATES:

4/24/2017 (SFZ, TFZ, RW) and 4/25/2017 (UFZ monitoring wells)

MEASUREMENT DATES:

4/24/2017 (SFZ, TFZ, RW) and 4/25/2017 (UFZ monitoring wells)

PERSONNEL: MEASUREMENT METHODS:

Jon McKinney (JM) and Max Hoffman (MH) Environmental Works, Inc. WL and NAPL presence: Interface probe (IM-1 for clean wells, IM-5 for recovery and NAPL wells, IM-5 for wells with historically higher dissolved phase concentrations). NAPL gauging conducted using disposable equipment.

	AS INS	TALLED				AS MEASURED ON THIS DATE			
WELL NUMBER	ZONE	TOP OF CASING ELEVATION	AS BUILT TOTAL DEPTH	DEPTH TO WATER	MEASURED TOTAL WELL DEPTH ¹	NAPL PRESENT?	NAPL THICKNESS	WELL BOTTOM CONDITION	COMMENTS
	-	Feet AMSL	Feet	Feet below TOC	Feet below TOC	LNAPL/DNAPL	Feet	Soft/Hard	
PW-1	Upper	1296.17	18.39	11.40					
PW-3	Upper	1286.94	14.26	7.14					
PW-10	Upper	1294.17	15.26	6.74		NO			
PW-11	Upper	1295.95	17.04	9.34					
PW-14	Upper	1299.98	19.84	4.07					
PW-20	Upper	1298.63	17.35	2.80	17.4	NO		HARD	
PW-29	Upper	1305.09	22.67	5.14					
PW-32	Upper	1305.16	19.00	6.26					
PW-34	Upper	1304.02	22.08	5.11					
BMW-1	Secondary	1284.48	142.08	32.37					survey mark is on inner 2" pump casing
BMW-2	Secondary	1283.50	130.55	32.65					below top of protective casing
BMW-4	Secondary	1287.99	153.17	43.02					
BMW-4A	Tertiary	1286.24	252.00	112.88					
BMW-5	Secondary	1287.54	160.00	55.50					pump offline
BMW-5A	Tertiary	1287.36	215.58	99.90					
BMW-6	Secondary	1301.53	161.60	61.81					
BMW-6A	Tertiary	1301.35	210.85	121.78					
BMW-9	Secondary	1291.62	154.98	30.61					
BMW-10R	Secondary	1306.16	176.16	50.27					
BMW-12	Secondary	1301.15	81.80	2.80	80380.0	DNAPL	2.5'	SOFT	
BMW-13	Secondary	1290.24		41.60	181.2	NO		HARD	
BMW-14	Secondary	1307.61		56.66	179.7	NO		SOFT	LS frag and particles on weight
BN-1	Upper	1296.83	20.00	3.65					
WL MW-2	Woodlawn	1252.80	45.70	31.02	44.0	NO		SOFT	
WL MW-3	Woodlawn	1252.80	42.90	32.50	42.8	DNAPL	0.1'	SOFT	
WL MW-4	Woodlawn	1251.18	36.98	31.05	36.6	NO		SOFT	
WL MW-11	Woodlawn	1214.61	18.71	7.91	18.1	NO		HARD	
RW1	Recovery (Upper)	1283.52	12.33	10.40		NO			
RW2	Recovery (Upper)	1282.93	19.50	8.90		DNAPL	TRACE		
RW3	Recovery (Upper)	1283.52	19.75	9.80		DNAPL	TRACE		
RW4	Recovery (Upper)	1286.85	17.92	10.00		DNAPL	0.05'		
RW5	Recovery (Upper)	1289.02	13.58	10.20		DNAPL	1.1'		
RW6	Recovery (Upper)	1282.60	24.00	6.90		DNAPL	TRACE		
RW7	Recovery (Upper)	1298.41	18.67	7.50		DNAPL	0.3'		well offline
RW8	Recovery (Upper)	1298.55	18.92	16.40		DNAPL	0.5'		
RW9	Recovery (Upper)	1298.10	18.25	6.00		DNAPL	1.0'		level control issue
RW10R	Recovery (Upper)	1302.49	18.76	18.10		DNAPL	TRACE		

MEASUREMENT DATES:

4/24/2017 (SFZ, TFZ, RW) and 4/25/2017 (UFZ monitoring wells)

PERSONNEL: MEASUREMENT METHODS: Jon McKinney (JM) and Max Hoffman (MH) Environmental Works, Inc. WL and NAPL presence: Interface probe (IM-1 for clean wells, IM-3 for recovery and NAPL wells, IM-5 for wells with historically higher dissolved phase

concentrations). NAPL gauging conducted using disposable equipment.

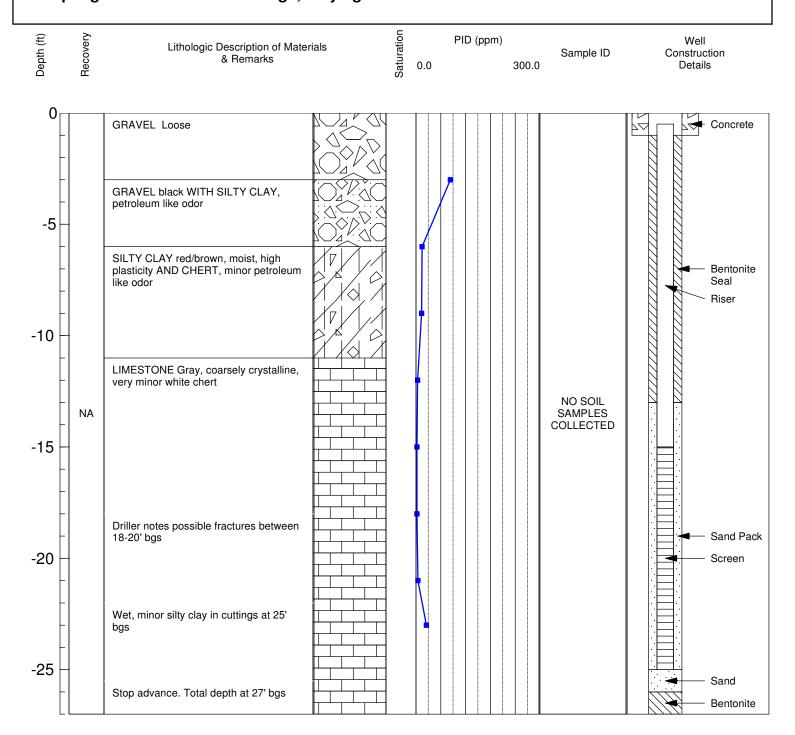
	AS INS	TALLED				AS MEASURED ON THIS DATE			
WELL NUMBER	ZONE	TOP OF CASING ELEVATION	AS BUILT TOTAL DEPTH	DEPTH TO WATER	MEASURED TOTAL WELL DEPTH ¹	NAPL PRESENT?	NAPL THICKNESS	WELL BOTTOM CONDITION	COMMENTS
-	-	Feet AMSL	Feet	Feet below TOC	Feet below TOC	LNAPL/DNAPL	Feet	Soft/Hard	·
RW11R	Recovery (Upper)	1302.86	14.90	12.30		NO			
RW12R	Recovery (Upper)	1303.03	14.69	3.10		NO			well offline
RW13	Recovery (Upper)	1295.65	21.50	1.80		DNAPL	0.4'		well offline
RW14	Recovery (Upper)	1297.04	18.33	11.40		DNAPL	0.5'		
RW15	Recovery (Upper)	1295.99	16.75	3.00		DNAPL	0.1'		well offline
RW16	Recovery (Upper)	1302.59	21.25	18.00		DNAPL	0.2'		
RW17	Recovery (Upper)	1301.38	19.50	19.00		NO			
RW18	Recovery (Upper)	1301.39	18.12	4.60		NO			well offline
RW19	Recovery (Upper)	1301.48	18.90	2.70		NO			well offline
RW20	Recovery (Upper)	1301.93	23.00	4.60		DNAPL	TRACE		well offline
RW21	Recovery (Upper)	1257.90	44.50	37.32		DNAPL	TRACE		NAPL smears on probe
RW22	Recovery (Upper)	1296.44	16.00	13.10		DNAPL	TRACE		
RW23	Recovery (Upper)	1298.93	9.00	8.10		DNAPL	0.2'		
RW24	Recovery (Upper)	1303.34	11.00	6.10		NO			rest relays, well is pumping down
RW25	Recovery (Upper)	1289.16		1.90		DNAPL	0.6'		pump running

oundwater sampling program. All other wells will have total depth measured biennially.

2) Well was converted from a recovery well to a monitoring well in October 2013. Modifications included removal of the well house structure and converting the aboveground completion to a flush-mount completion.

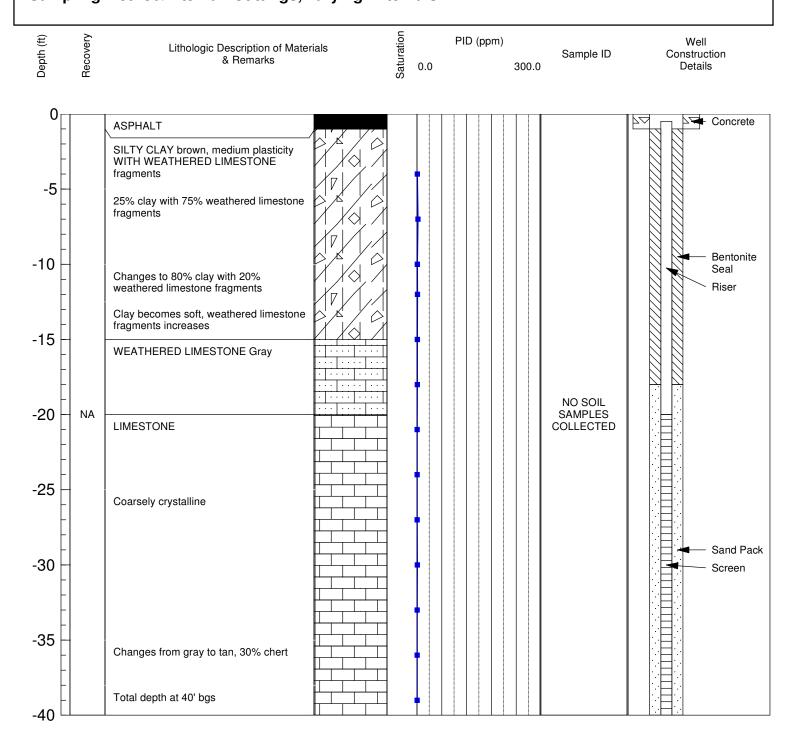
MSL = Above mean sea level

NA = Not applicable

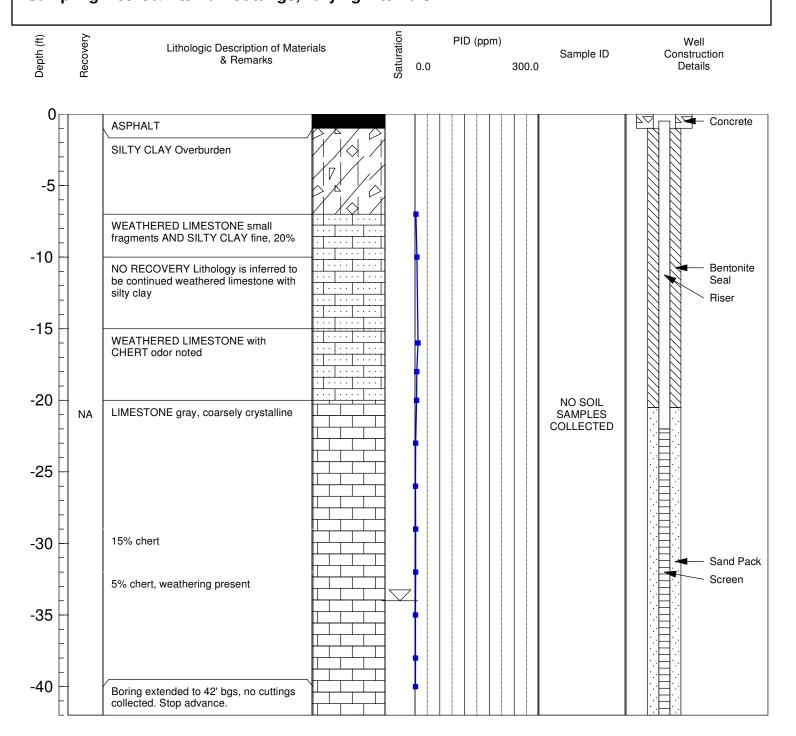

NM = Not measured

TOC = Top of Casing

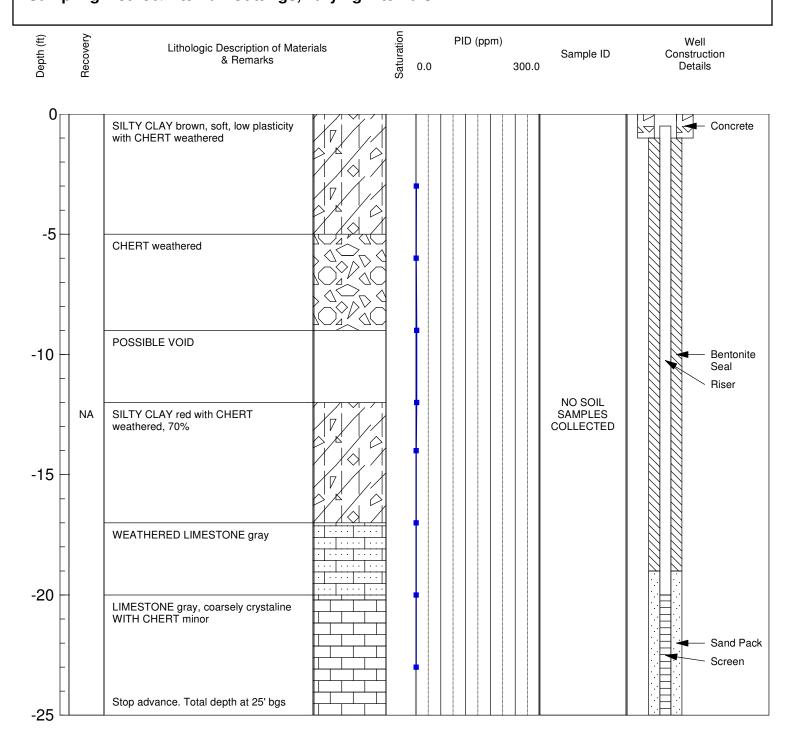
= Dense Non-Aqueous Phase Liquid


= Light Non-Aqueous Phase Liquid

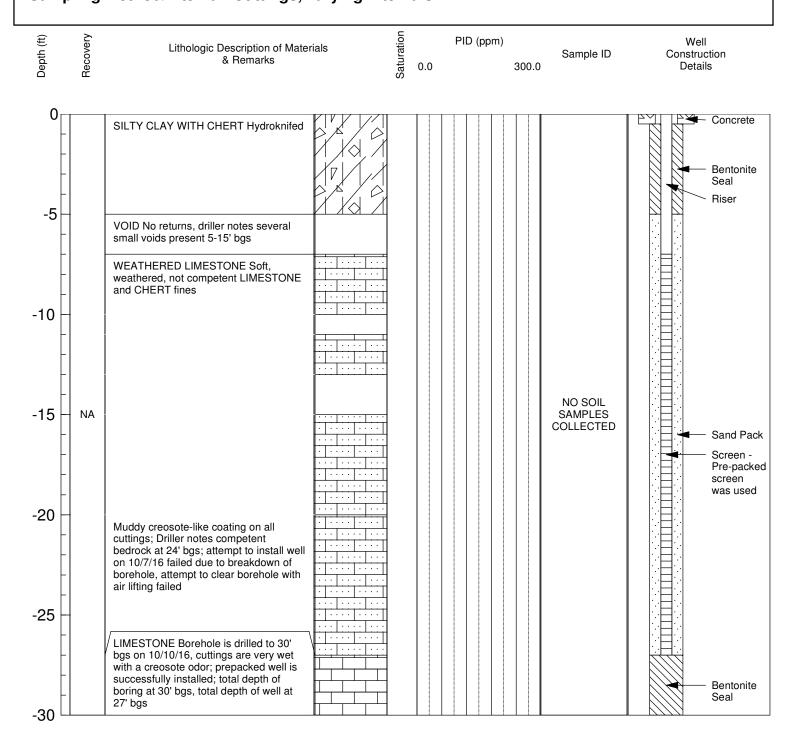
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 9/26/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" Total Depth: 27' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-76 Logged By: BG, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

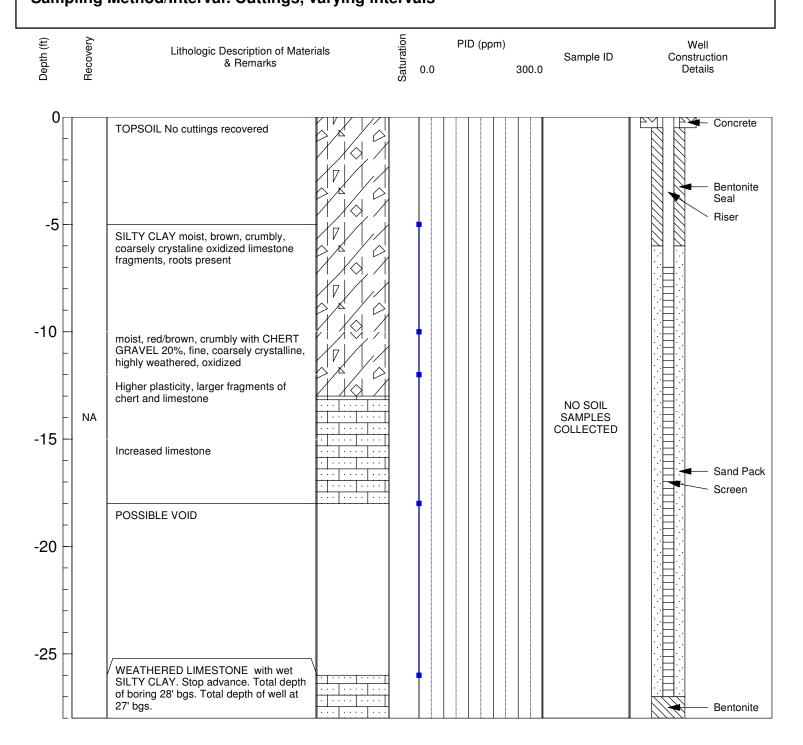
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 10/5/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.125" Total Depth: 40' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-77 Logged By: BG, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

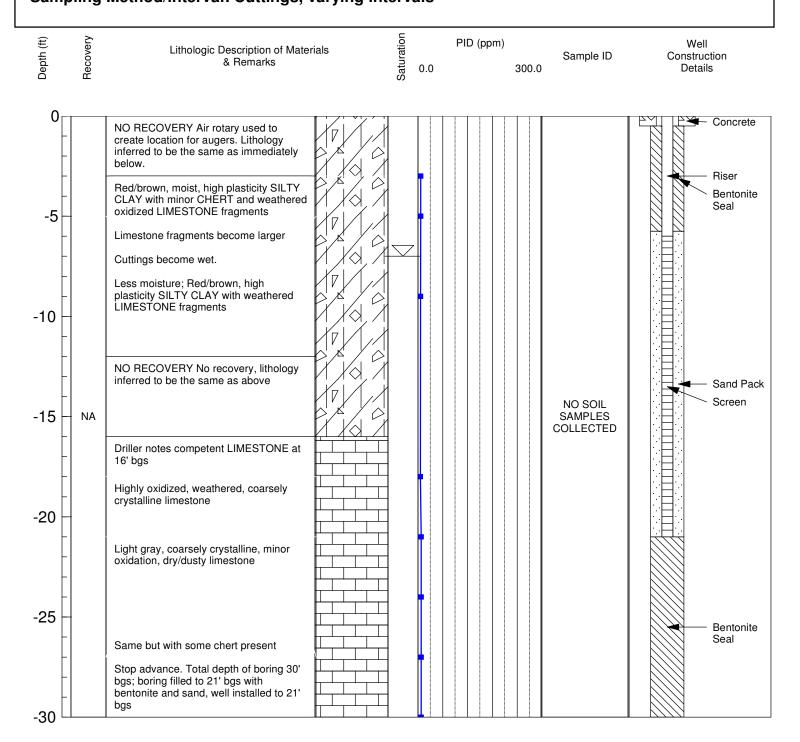
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 10/5/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.125" Total Depth: 42' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-78 Logged By: TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

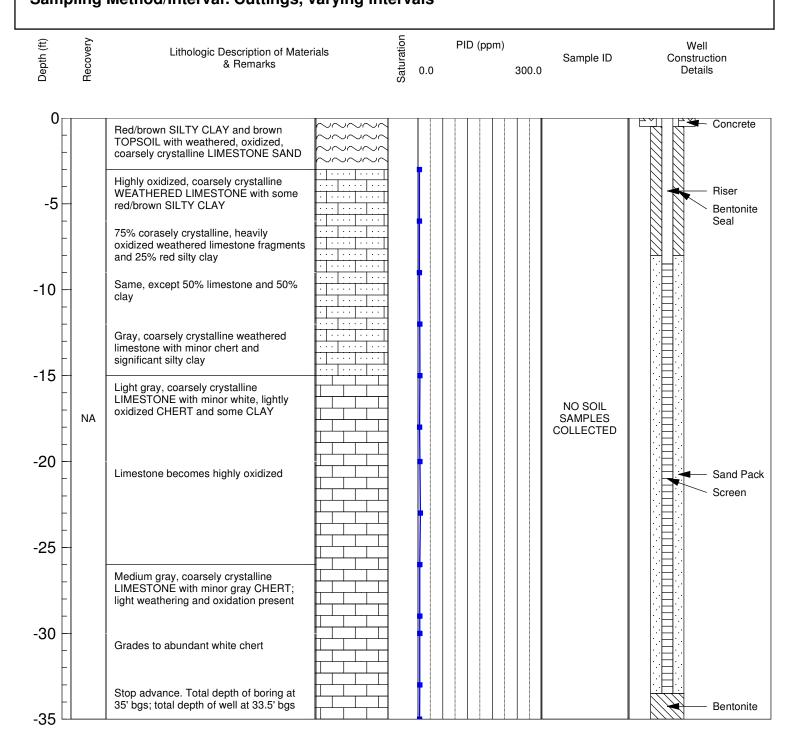
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 10/6/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.125'' Total Depth: 25' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-79 Logged By: TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

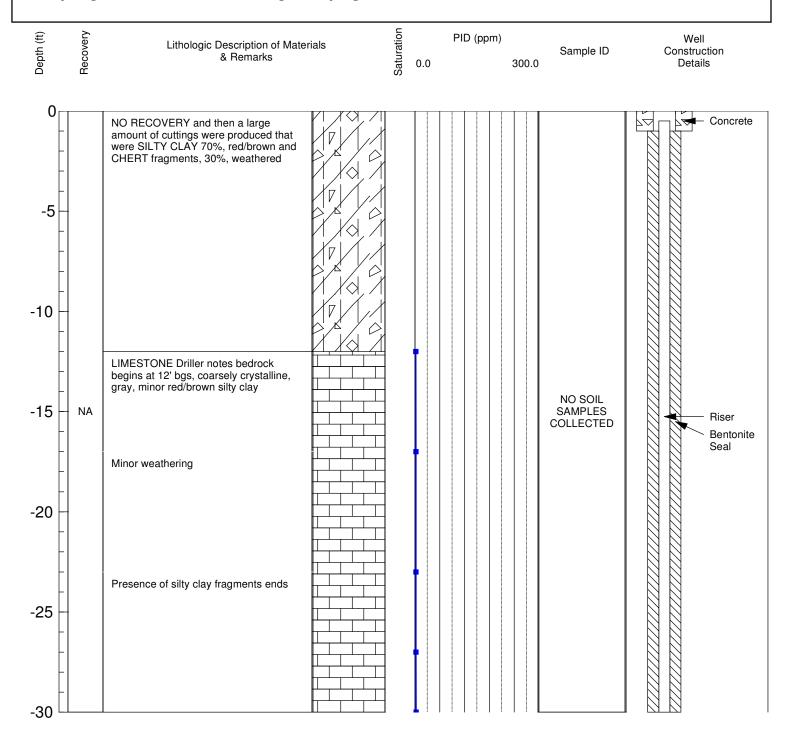
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 10/7/2016 - 10/10/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.125" Total Depth: 30' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-80 Logged By: TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

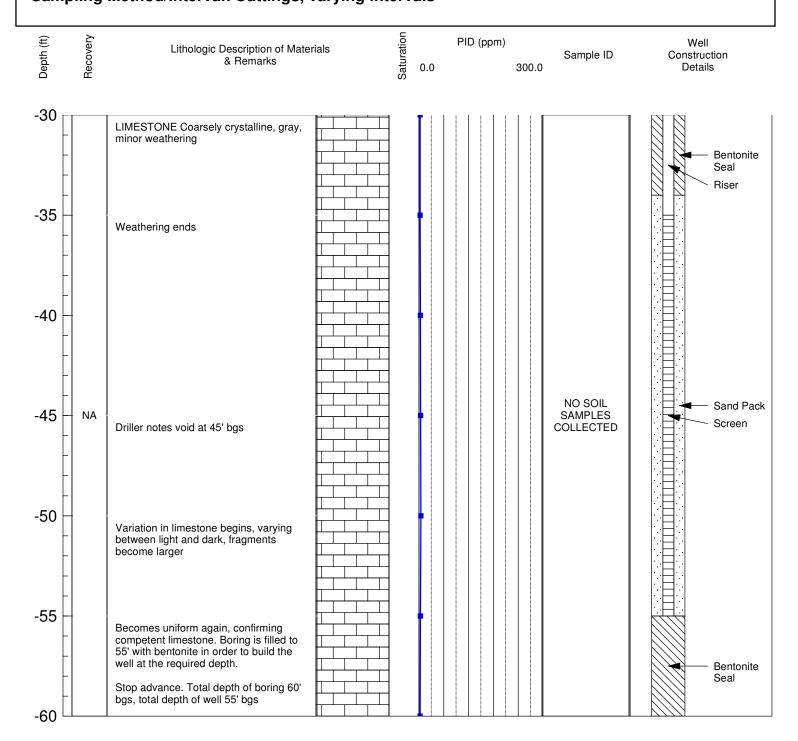
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 10/13/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.125" Total Depth: Boring - 28' bgs; Well - 27' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-81 Logged By: TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

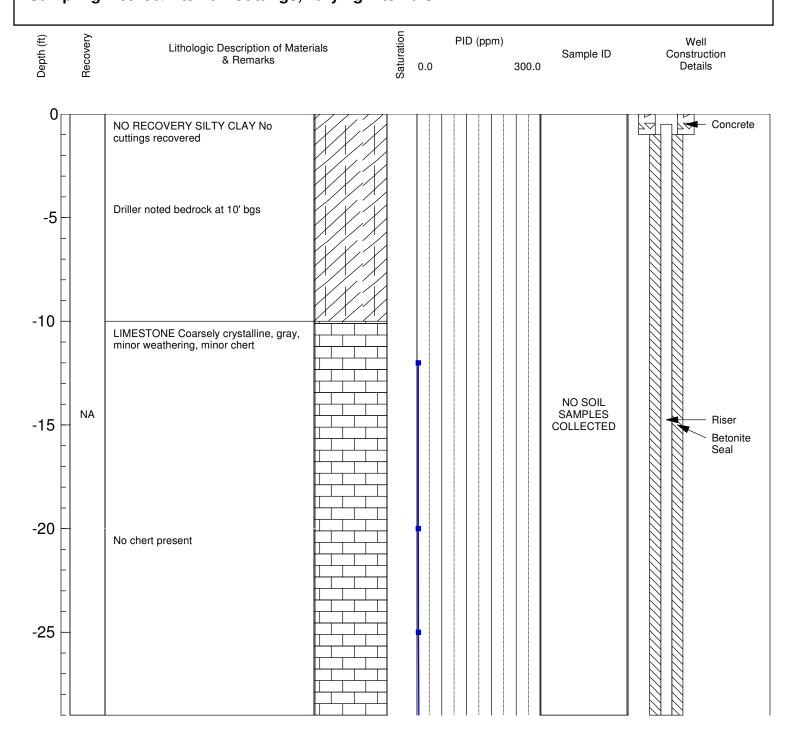
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 10/17/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: HSA 12"/AR 6" Total Depth: Boring - 30' bgs; Well - 21' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-82 Logged By: TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

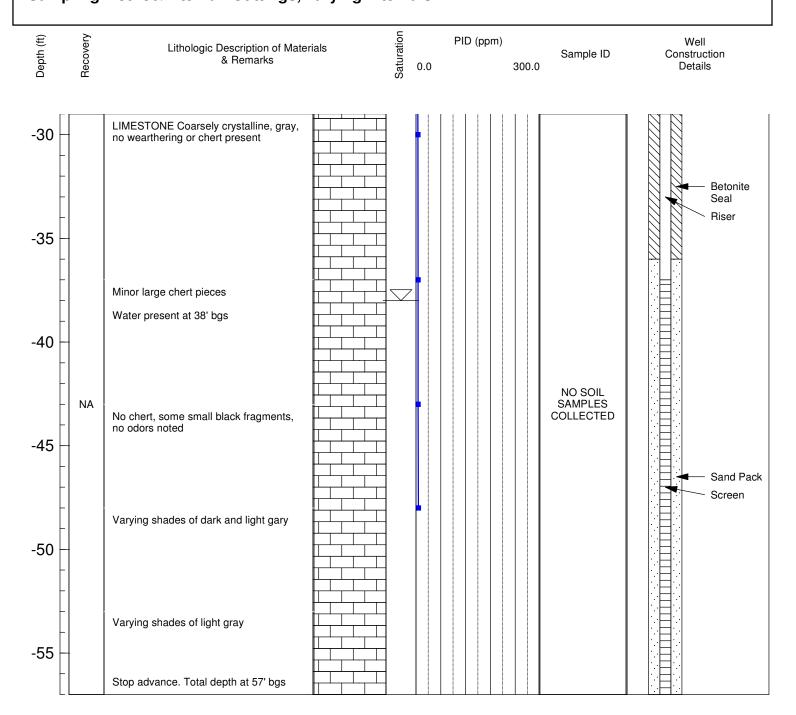
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 10/18/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.125'' Total Depth: Boring - 35' bgs; Well - 33.5' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-83 Logged By: TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

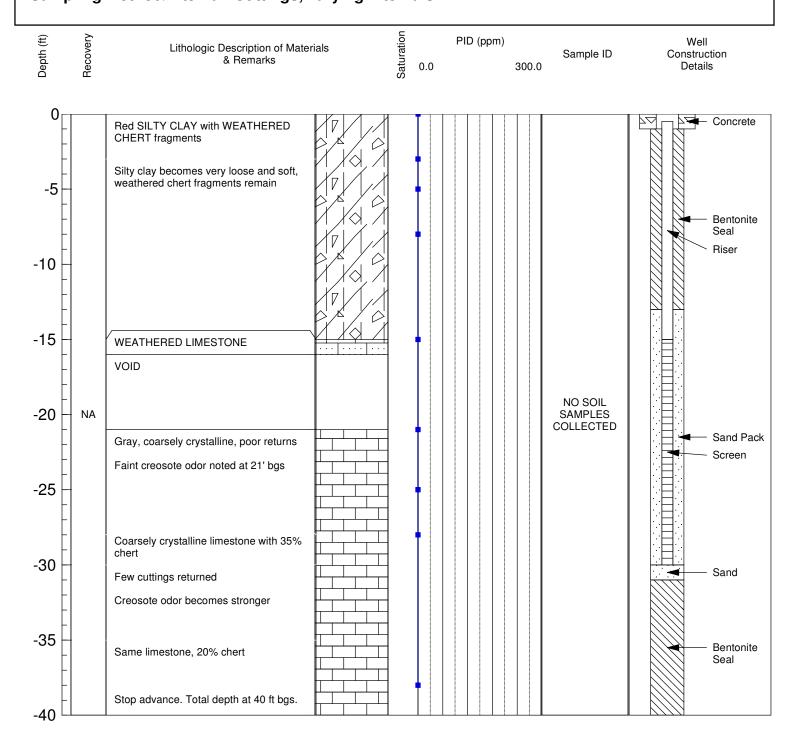
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 11/7/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.125'' Total Depth: 60' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-84 Logged By: MG, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

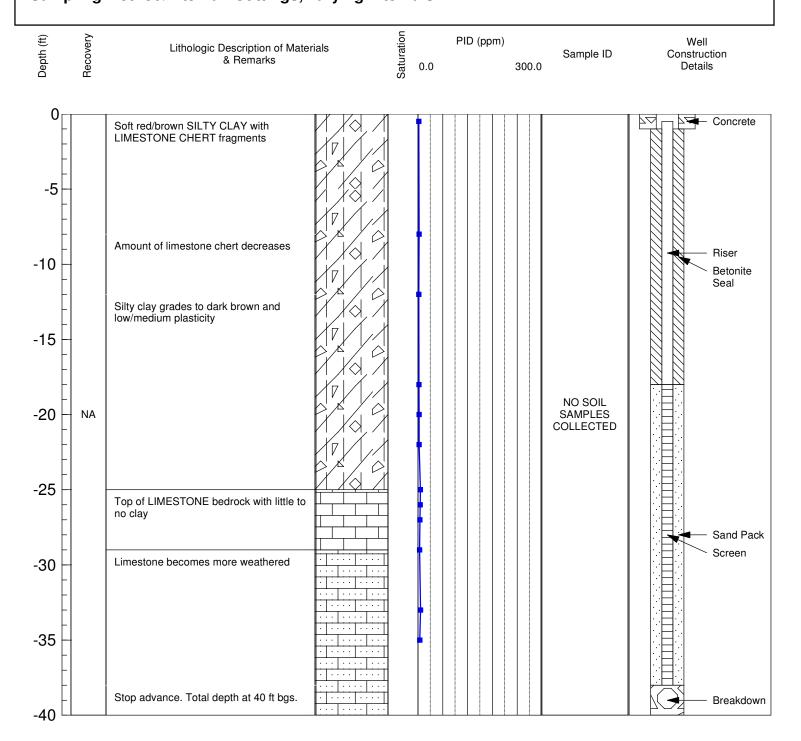
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 11/7/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.125" Total Depth: 60' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-84 Logged By: MG, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

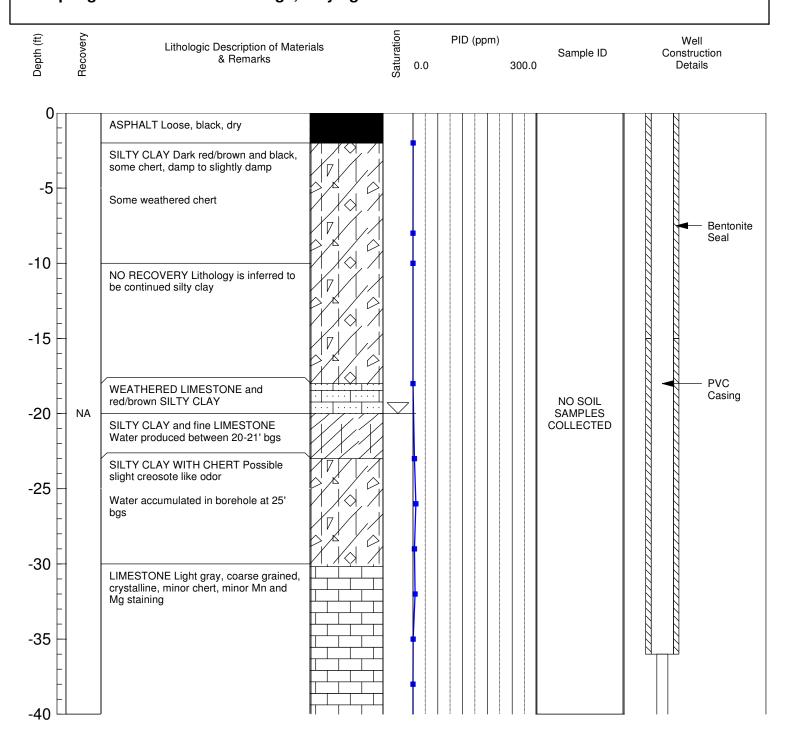
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 11/14/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.25'' Total Depth: 57' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-85 Logged By: MG, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

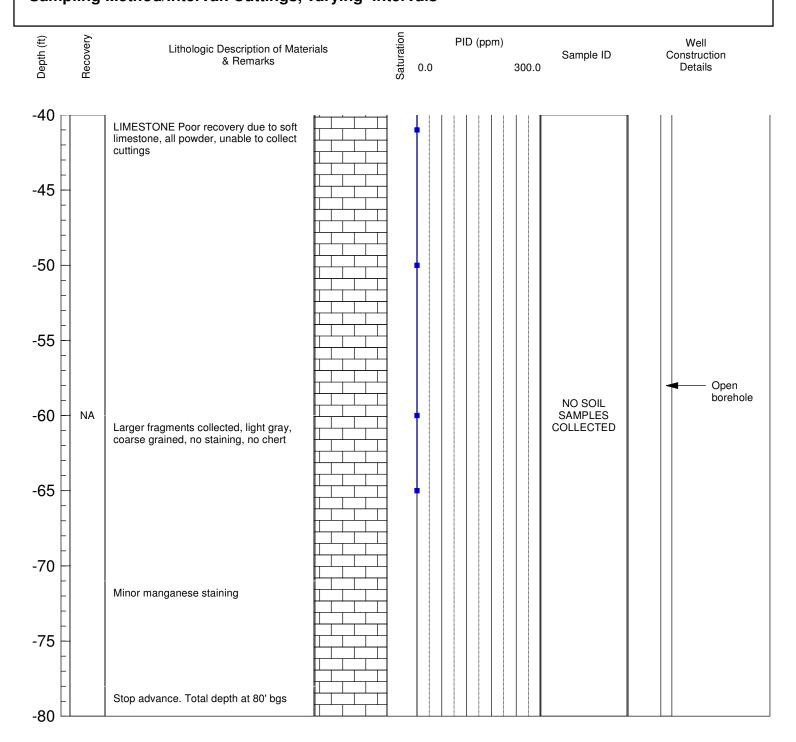
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 11/14/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.25'' Total Depth: 57' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-85 Logged By: MG, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 12/20/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.125" Total Depth: 40' bgs Sampling Method/Interval: Cuttings, varying intervals

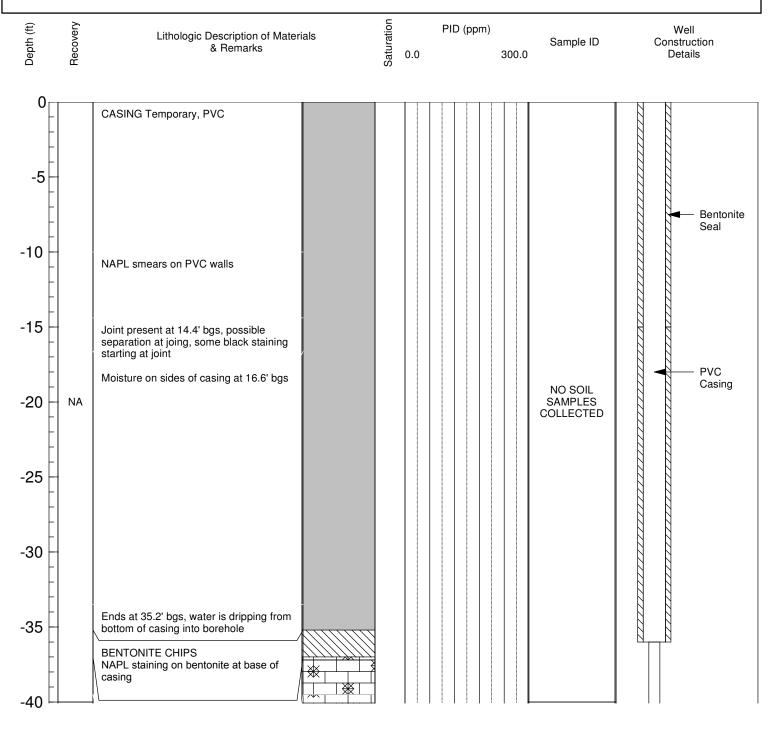

Borehole Log: SMW-86 Logged By: TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 12/27/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 6.125" Total Depth: 40' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: SMW-87 Logged By: MH, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

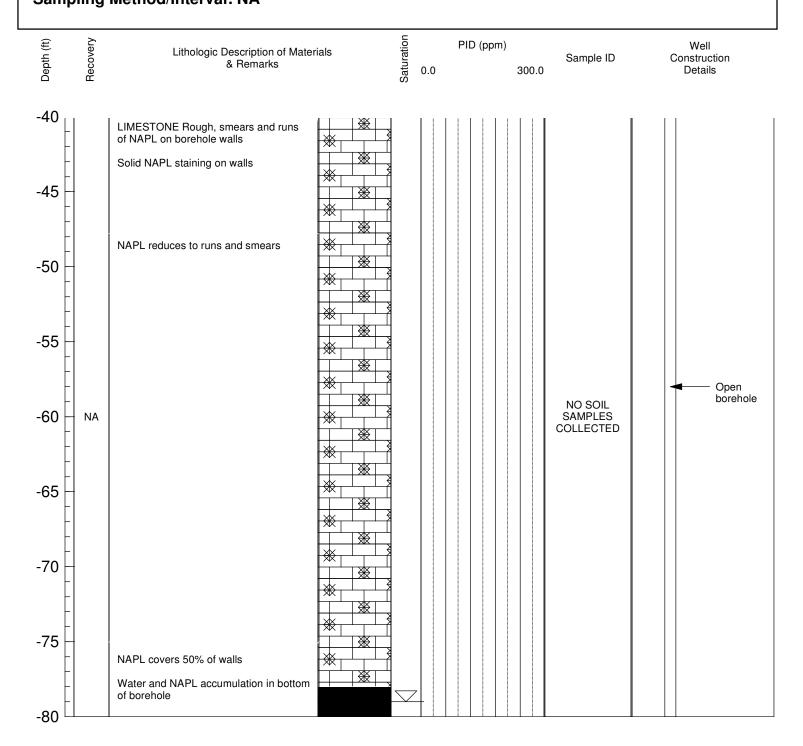
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 9/21/2016-9/22/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-36' bgs, 5 5/8" from 36' to 80' Total Depth: 80' bgs Sampling Method/Interval: Cuttings, varying intervals

Borehole Log: BMW-12 Logged By: BG, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

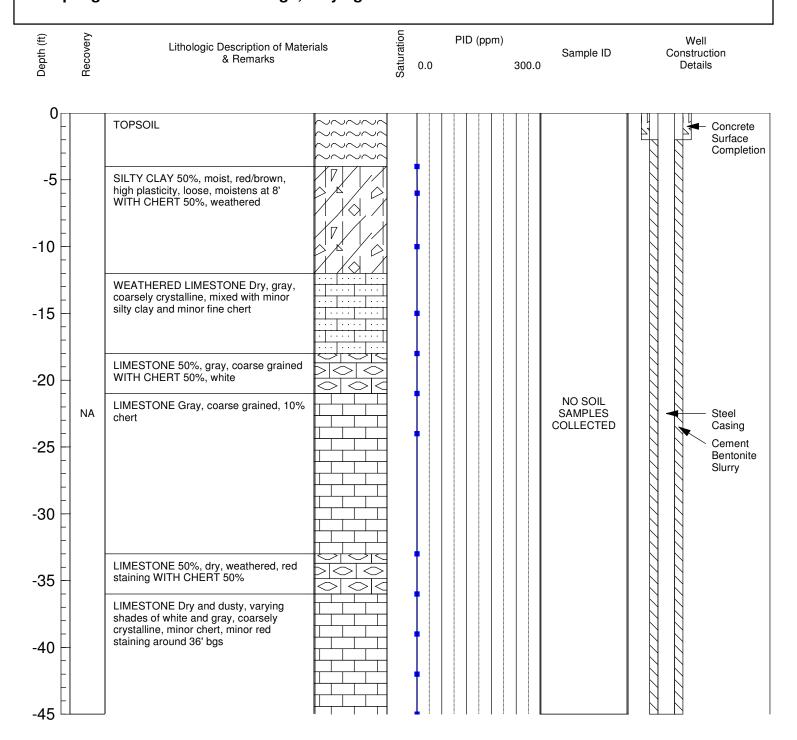

Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 9/21/2016-9/22/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-36' bgs, 5 5/8" from 36' to 80' Total Depth: 80' bgs Sampling Method/Interval: Cuttings, varying intervals

Borehole Log: BMW-12 Logged By: BG, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

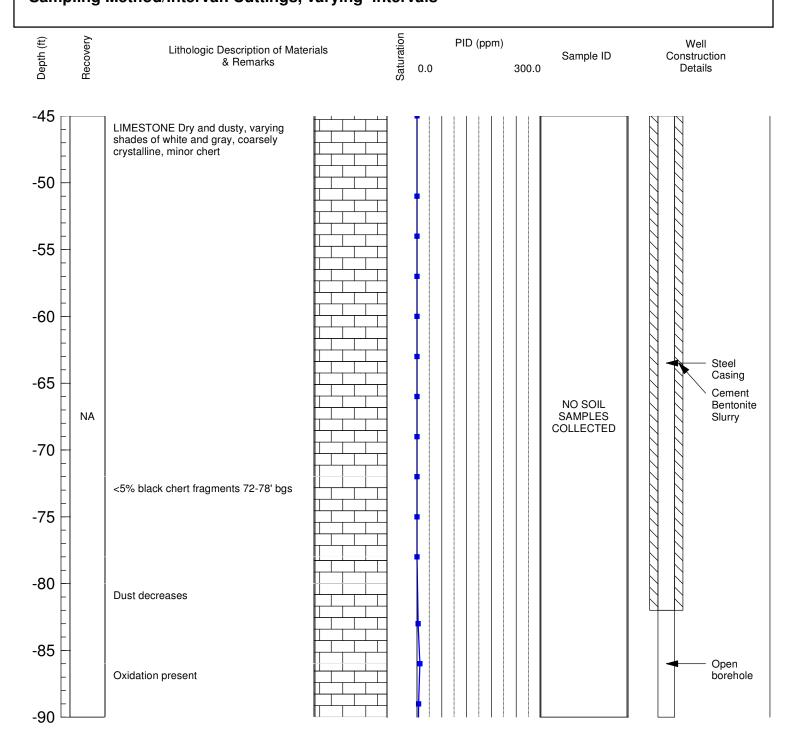
Soil Boring Log:BMW-12: Downhole Video Camera Footage Summary


Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 9/27/2016 Driller/Method: NA Diameter: 11" from 0-36' bgs, 5 5/8" from 36' to 80' Total Depth: 80' bgs Sampling Method/Interval: NA

Borehole Log: BMW-12: Downhole Video Camera Footage Summary Logged By: JM, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs


Soil Boring Log:BMW-12: Downhole Video Camera Footage Summary

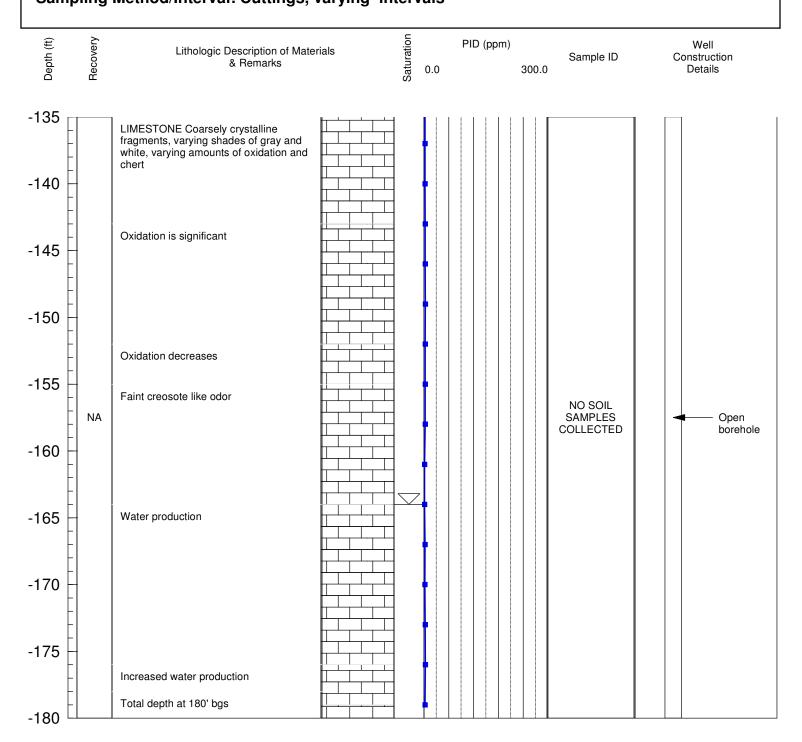
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: 9/27/2016 Driller/Method: NA Diameter: 11" from 0-36' bgs, 5 5/8" from 36' to 80' Total Depth: 80' bgs Sampling Method/Interval: NA


Borehole Log: BMW-12: Downhole Video Camera Footage Summary Logged By: JM, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: Advanced 0-80' bgs on 9/23/2016 and 80-180' bgs on 9/29/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-80' bgs, 6 1/8" from 80' to 180' Total Depth: 180' bgs Sampling Method/Interval: Cuttings, varying intervals

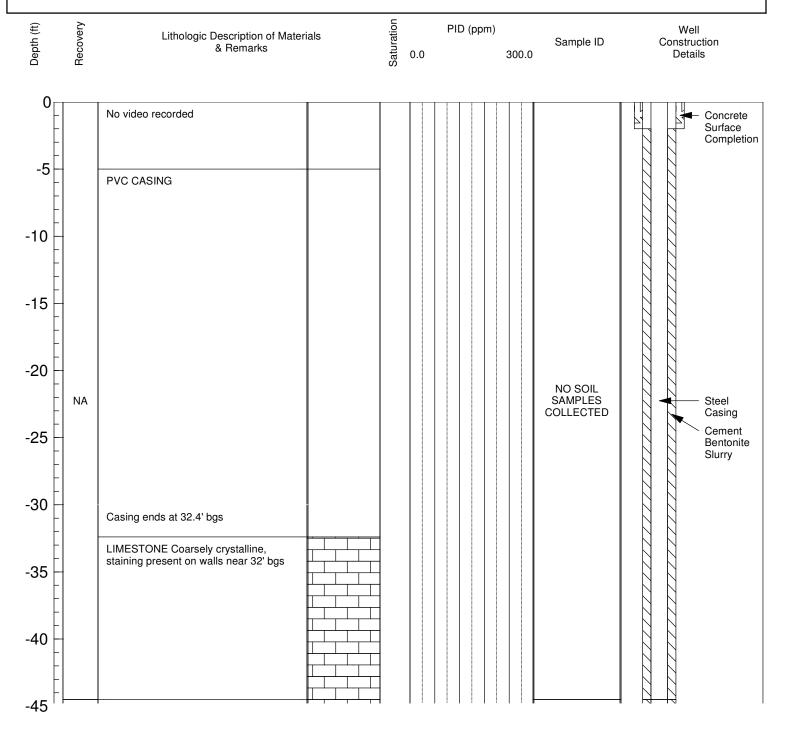
Borehole Log: BMW-13 Logged By: BG & JM, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: Advanced 0-80' bgs on 9/23/2016 and 80-180' bgs on 9/29/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-80' bgs, 6 1/8" from 80' to 180' Total Depth: 180' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: BMW-13 Logged By: BG & JM, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

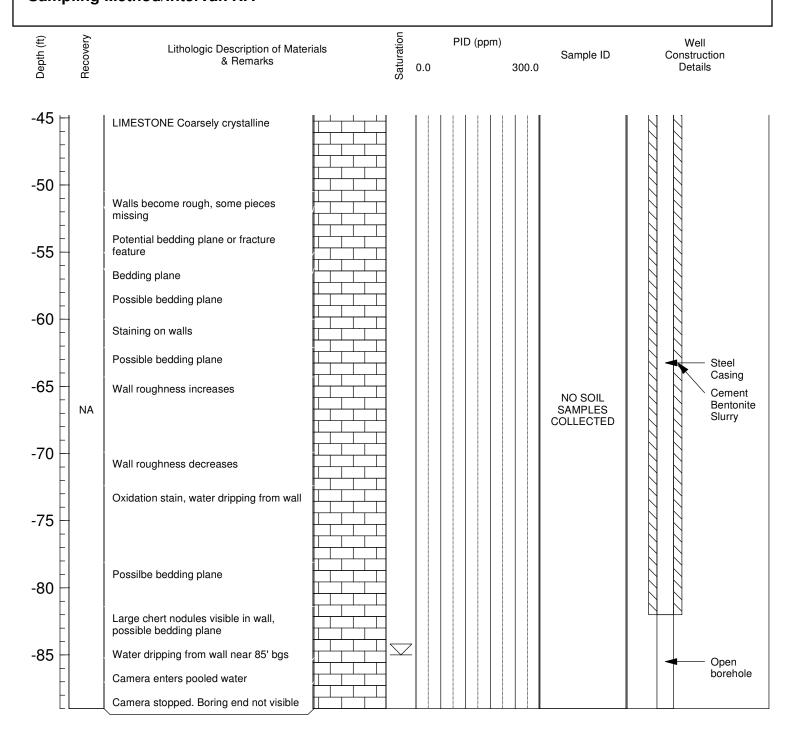
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: Advanced 0-80' bgs on 9/23/2016 and 80-180' bgs on 9/29/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-80' bgs, 6 1/8" from 80' to 180' Total Depth: 180' bgs Sampling Method/Interval: Cuttings, varying intervals

Borehole Log: BMW-13 Logged By: BG & JM, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs


Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: Advanced 0-80' bgs on 9/23/2016 and 80-180' bgs on 9/29/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-80' bgs, 6 1/8" from 80' to 180' Total Depth: 180' bgs Sampling Method/Interval: Cuttings, varying intervals

Borehole Log: BMW-13 Logged By: BG & JM, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

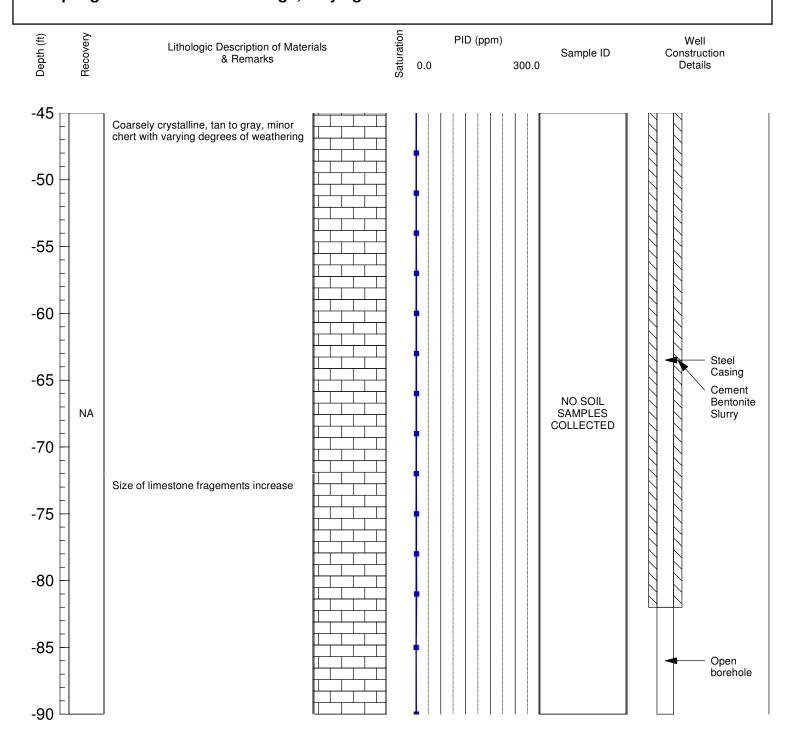
Soil Boring Log: BMW-13: Downhole Video Camera Footage


Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: Recorded 9/27/2016, before boring is extended to 180' bgs Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-80' bgs, 6 1/8" from 80' to 180' Total Depth: 89' bgs Sampling Method/Interval: NA

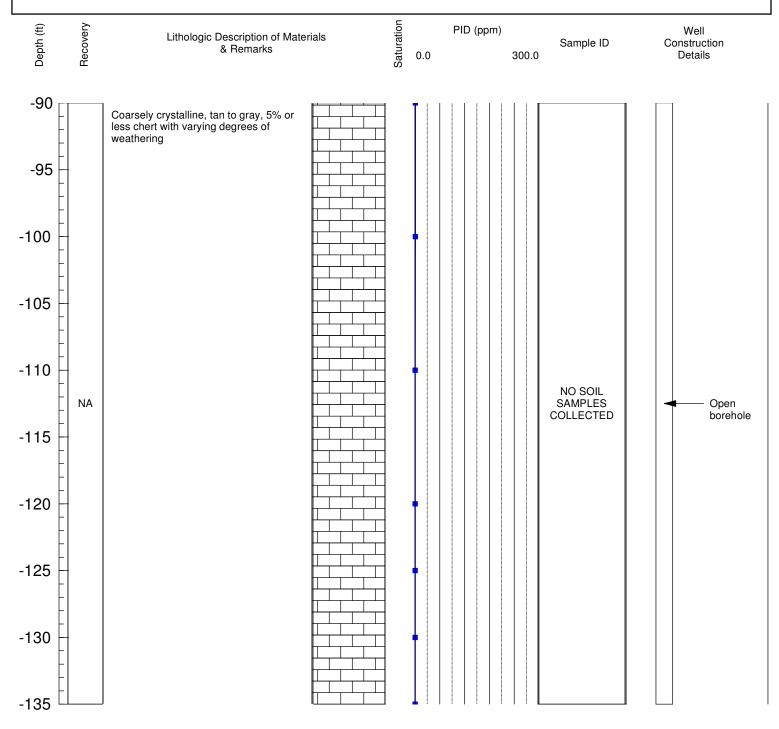
Borehole Log: BMW-13: Downhole Video Camera Footage Logged By: BG & JM, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs


Soil Boring Log: BMW-13: Downhole Video Camera Footage

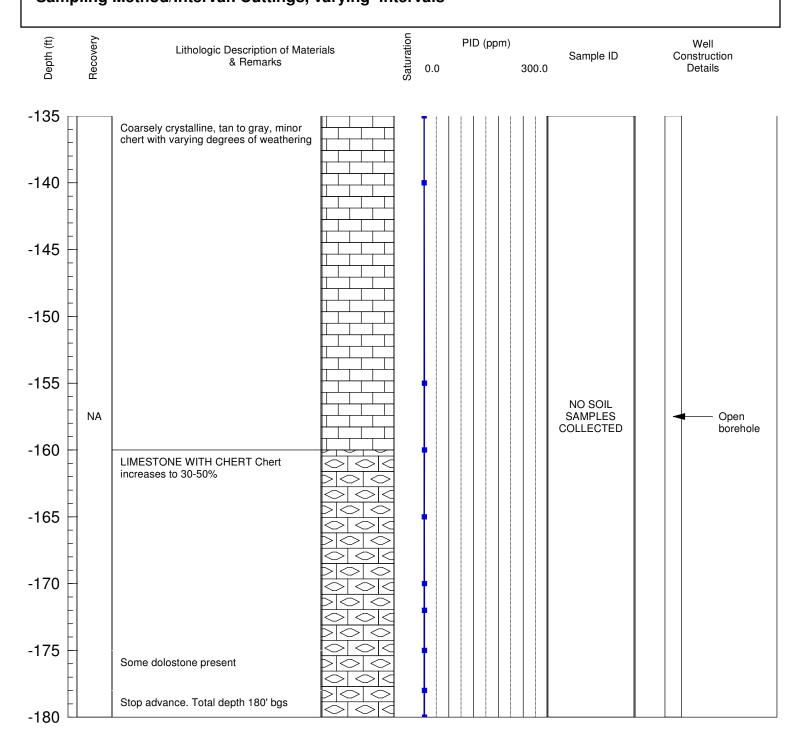
Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: Recorded 9/27/2016, before boring is extended to 180' bgs Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-80' bgs, 6 1/8" from 80' to 180' Total Depth: 89' bgs Sampling Method/Interval: NA


Borehole Log: BMW-13: Downhole Video Camera Footage Logged By: BG & JM, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: Advanced 0-80' bgs on 9/28/2016 and 80-180' bgs on 9/30/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-80' bgs, 6 1/8" from 80' to 180' Total Depth: 180' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: BMW-14 Logged By: BG & TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: Advanced 0-80' bgs on 9/28/2016 and 80-180' bgs on 9/30/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-80' bgs, 6 1/8" from 80' to 180' Total Depth: 180' bgs Sampling Method/Interval: Cuttings, varying intervals


Borehole Log: BMW-14 Logged By: BG & TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: Advanced 0-80' bgs on 9/28/2016 and 80-180' bgs on 9/30/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-80' bgs, 6 1/8" from 80' to 180' Total Depth: 180' bgs Sampling Method/Interval: Cuttings, varying intervals

Borehole Log: BMW-14 Logged By: BG & TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs

Site Name: Springfield Facility: Greenfield Environmental Multistate Trust, LLC Site Address: 2800 West High Street, Springfield, Greene County, MO Date: Advanced 0-80' bgs on 9/28/2016 and 80-180' bgs on 9/30/2016 Driller/Method: Sunbelt Environmental Services Inc./Air Rotary Diameter: 11" from 0-80' bgs, 6 1/8" from 80' to 180' Total Depth: 180' bgs Sampling Method/Interval: Cuttings, varying intervals

Borehole Log: BMW-14 Logged By: BG & TL, Environmental Works Inc. Drilled By: Sunbelt Environmental Services Inc. Lab Analysis By: Lancaster Labs